PhD Smolovyk Liana

Practical lesson N1

Lesson topic: Determination of oil and petroleum gas reserves

The first method – volumetric method:

Oil reserves into the reservoir conditions can be calculated:

$$Q_{oil.res} = F \cdot h \cdot m_o \cdot S_{in} \cdot \rho_{oil} \tag{1}$$

where

F – oil-drainage area, m²; h - formation thickness, m; m_0 – effective porosity coefficient; S_{in} – initial oil saturation; ρ_{oil} - oil density, kg/m³;

Oil reserves into the surfase conditions can be calculated:

$$Q_{oil.res} = \frac{F \cdot h \cdot m_o \cdot S_{in} \cdot \rho}{B} \quad , \tag{2}$$

where

ρ- degassed oil density, kg/m³; b - formation volume factor.

Oil-associated gas reserves *into the reservoir conditions* can be calculated using equation:

$$Q_{gas} = F \cdot h \cdot m_o \cdot S_{in} \cdot G_o , \qquad (3)$$

 G_o – initial gas factor of oil in reservoir condition, m^3/m^3 .

Oil-associated gas reserves *into the surfase conditions* can be calculated using equation:

$$Q_{gas} = F \cdot h \cdot 1/b \cdot m_o \cdot S_{in} \cdot G_o, \quad (4)$$

Task N1. Determine initial oil reserves in the field for reservoir and surface conditions for the data: reservoir radius - R= 8 km, effective oil-saturated thickness –h = 16m, open porosity coefficient - $m_{o=}$ 0.16, initial oil saturation - S_{in} =0.8, oil formation volume factor – b=1.15, degassed oil density - ρ =830 kg / m³, oil density- ρ_{oil} =640 kg / m³.

$$F = \pi R^2 = 3.14 \cdot 8000^2 = 2 \cdot 10^8 \text{ m}^2$$

reservoir conditions

$$Q_{oil.res} = F \cdot h \cdot m_o \cdot S_{in} \cdot \rho_{oil}$$

$$Q_{oil.res} = 2 \cdot 10^8 \cdot 16 \cdot 0.16 \cdot 0.8 \cdot 640 = 26.2 \cdot 10^{10} \text{kg}$$

surfase conditions

$$Q_{oil.res} = \frac{F \cdot h \cdot m_o \cdot S_{in} \cdot \rho}{B}$$

$$Q_{oil.res} = 2.10^8 \cdot 16.0.16.0, 8.830.1/1, 15 = 29,56.10^{10} \text{kg}$$

The second method – method of material balance:

$$Q_{oil.res} = Q_{oil.prod..} + Q_{oil.residual}$$

$$Q_{oil.prod..} = Q_{oil.res} \cdot \eta_{oil}$$

 $Q_{oil.prod.}$ - oil prodaction reserves

Qoil.residual - residual oil reserves

 η_{oil} - oil recovery factor

Task N2. Determine the initial and cumulative petroleum gas reserves in the field for the following data: oil productive area $-F = 6 \cdot 10^8 \text{ m}^2$, effective oilsaturated reservoir thickness -h=19 m, open porosity coefficient $-m_0 = 0.15$, oil saturation $-S_{in} = 0.82$, oil formation volume factor -b = 1.2, oil recovery factor -0.6, solution gas-oil ratio $-97 \text{ m}^3/\text{m}^3$.

$$Q_{gas} = F \cdot h \cdot 1/b \cdot m_o \cdot S_{in} \cdot G_o$$

$$Q_{gasinit.} = 6.10^8 \cdot 19 \cdot 0,15 \cdot 0,82 \cdot 97 \cdot 1/1,2 = 1,13.10^{11} \,\mathrm{m}^3$$

$$Q_{gasprod.} = Q_{gasinit} \cdot \eta_{oil}$$

 $Q_{gasprod.} = 1,13 \cdot 10^{11} \cdot 0,6 = 0,678 \cdot 10^{11} \,\mathrm{m}^3$

Task N3. Determine the cumulative oil production from deposits for the data: oil productive area – $F=9\cdot10^7$ m², effective oil-saturated thickness – h=15m, open porosity coefficient - m_0 =0.14, initial oil saturation - S_{in} =0.76, oil formation volume factor – b=1.3, degassed oil density - ρ =840 kg / m3, oil recovery factor - η_{oil} =0.56.

$$Q_{oilprod..} = 9.10^7 \cdot 15.0, 14.0, 76.840.1/1, 3.0, 56=5.10^{10} \text{kg}$$

Task N4. Determine the residual oil reserve for the data: the length of the oil deposit – L=6 km, the wigth of the oil deposit – B=2km, effective oil-saturated thickness – h=16m, open porosity coefficient - m_0 =0.15, initial oil saturation - S_{in} =0.79, oil formation volume factor – b=1.2, degassed oil density – ρ = 800 kg / m3, oil recovery factor - η_{oil} = 0.45.

$$F=L \cdot B = 6000 \cdot 2000 = 12 \cdot 10^6 m^2$$

$$Q_{oilres.} = 12 \cdot 10^6 \cdot 16 \cdot 0.15 \cdot 0.79 \cdot 800 \cdot 1/1.2 = 1.52 \cdot 10^{10} \,\mathrm{kg}$$

$$Q_{oilprod.} = 1,52 \cdot 10^{10} \cdot 0,45 = 0,68 \cdot 10^{10} \text{ kg}$$

$$Q_{oil.res} = Q_{oil.prod..} + Q_{oil.residual}$$

$$Q_{oil.residual} = Q_{oil.res} - Q_{oil.prod.}$$

$$Q_{oil.resid.}$$
=1,52 \cdot 10¹⁰-0,68 \cdot 10¹⁰=0,84 \cdot 10¹⁰ kg