Variant 1

- Determine the initial oil and petroleum gas reserves in the field for the following data: oil productive area 3·10⁷ m², effective oil-saturated reservoir thickness 12 m, open porosity coefficient 0.14, oil saturation 0.75, oil formation volume factor 1.5, degassed oil density 850 kg/m³, solution gas-oil ratio 85 m³/m³.
- 2. Determine how many liquid will be produced by volumetric expansion drive for radial field development with initial oil-saturated reservoir radius R=3 km, if oil-saturated reservoir thickness is h=30 m, initial reservoir pressure $P_{init.}$ = 22 MPa, bubble point pressure P_b = 17 MPa, oil dynamic viscosity coefficient μ =2.2 mPa·s, reservoir of permeability –k= 0.2 D, piezoconductance coefficient κ =0.3 m²/s.

Variant 2

- 1. Determine the cumulative oil production from deposits for the data: oil productive area $9 \cdot 10^7$ m², effective oil-saturated thickness 13m, open porosity coefficient 0.15, initial oil saturation 0.76, oil formation volume factor 1.2, degassed oil density 840 kg / m3, oil recovery factor 0.7.
 - 2. Determine the cumulative oil production from deposits to be achieved by elastic forces while reducing the average reservoir pressure on 8,8 MPa for the following data: oil productive area $7 \cdot 10^6 \text{m}^2$, the effective thickness 28 m, porosity coefficient 0.17, oil elasticity coefficient $1,6 \cdot 10^{-9} \text{ Pa}^{-1}$, water elasticity coefficient $3,06 \cdot 10^{-10} \text{ Pa}^{-1}$, initial oil saturation 0,75. Oil layer is not deformed.

- Determine initial oil reserves in the field for reservoir and surface conditions for the data: reservoir radius 6 km, effective oil-saturated thickness - 15m, open porosity coefficient - 0.16, initial oil saturation -0.75, oil formation volume factor - 1.15, degassed oil density - 850 kg / m³, oil density-630 kg / m³.
- 2. Determine oil recovery factor to be achieved by elastic forces while reducing the average reservoir pressure on 3 MPa for the following data: the effective thickness 18 m, porosity coefficient 0.13, liquid elasticity

coefficient $-2.7 \cdot 10^{-10} \text{ Pa}^{-1}$, rock elasticity coefficient $-2 \cdot 10^{-10} \text{ Pa}^{-1}$, initial oil saturation -0.78 the radius of the initial oil saturation -20000 m.

Variant 4

- Determine the initial oil and petroleum gas reserves in the field for the following data: oil productive area 2·10⁸ m², effective oil-saturated reservoir thickness 15 m, open porosity coefficient 0.15, oil saturation 0.75, oil formation volume factor 1.4, degassed oil density 875 kg/m³, solution gas-oil ratio 80 m³/m³.
- 2. Determine oil recovery factor which will be achieved by volumetric expansion drive for radial field development with initial oil-saturated reservoir radius -18000 m and aquifer zone radius -47 000 m if oil-saturated reservoir thickness is 17 m, open porosity coefficient- 0.13, initial oil saturation 0.75, oil elasticity coefficient $2 \cdot 10^{-9}$ Pa⁻¹, rock elasticity coefficient $2 \cdot 10^{-10}$ Pa⁻¹, water elasticity coefficient $4,1 \cdot 10^{-10}$ Pa⁻¹, initial reservoir pressure 42 MPa, bubble point pressure 39 MPa.

Variant 5

- 1. Determine the cumulative oil production from deposits for the data: oil productive area $-5.6\cdot10^7$ m², effective oil-saturated thickness 13m, open porosity coefficient 0.12, initial oil saturation 0.8, oil formation volume factor 1.2, degassed oil density 850 kg / m3, oil recovery factor 0.6.
- 2. Determine oil recovery factor to be achieved by elastic forces while reducing the average reservoir pressure on 5 MPa for the following data: the effective thickness 15 m, porosity coefficient 0.13, liquid elasticity coefficient $2.7 \cdot 10^{-10}$ Pa⁻¹, rock elasticity coefficient -
- $2 \cdot 10^{-10}$ Pa⁻¹, initial oil saturation 0,78 the radius of the initial oil saturation -20000m.

Variant 6

1. Determine initial oil reserves in the field for reservoir and surface conditions for the data: reservoir radius 7 km, effective oil-saturated thickness - 15m, open porosity coefficient - 0.17, initial oil saturation -

- 0.75, oil formation volume factor 1.16, degassed oil density 850 kg / m^3 , oil density-620 kg/ m^3 .
- 2. Determine how many liquid will be produced by volumetric expansion drive for radial field development with initial oil-saturated reservoir radius R=3 km, if oil-saturated reservoir thickness is h=30 m, initial reservoir pressure $P_{init.}$ = 22 MPa, bubble point pressure P_b = 17 MPa, oil dynamic viscosity coefficient μ =2.2 mPa·s, reservoir of permeability –k= 0.2 D, piezoconductance coefficient κ =0.3 m²/s.

Variant 7

- 1. Determine the initial oil and petroleum gas reserves in the field for the following data: oil productive area $2 \cdot 10 \text{ m}^2$, effective oil-saturated reservoir thickness 14 m, open porosity coefficient 0.14, oil saturation 0.75, oil formation volume factor 1.3, degassed oil density 850 kg/m³, solution gas-oil ratio 90 m³/m³.
- 2. Determine how many liquid will be produced by volumetric expansion drive for radial field development with initial oil-saturated reservoir radius R=3.2 km, if oil-saturated reservoir thickness is h=25 m, initial reservoir pressure $P_{init.}$ = 22 MPa, bubble point pressure P_b = 17 MPa, oil dynamic viscosity coefficient μ =2.2 mPa·s, reservoir of permeability –k= 0.2 D, piezoconductance coefficient κ =0.3 m²/s.

- 1. Determine the cumulative oil production from deposits for the data: oil productive area $9\cdot10^7$ m², effective oil-saturated thickness 15m, open porosity coefficient 0.14, initial oil saturation 0.76, oil formation volume factor 1.3, degassed oil density 840 kg / m3, oil recovery factor 0.56.
- 2. Determine the cumulative oil production from deposits to be achieved by elastic forces while reducing the average reservoir pressure on 8,8 MPa for the following data: oil productive area $6\cdot10^6$ m², the effective thickness 28 m, porosity coefficient 0.15, oil elasticity coefficient –

 $1,58 \cdot 10^{-9} \text{ Pa}^{-1}$, water elasticity coefficient – $3,06 \cdot 10^{-10} \text{ Pa}^{-1}$, initial oil saturation – 0,75. Oil layer is not deformed.

Variant 9

- Determine initial oil reserves in the field for reservoir and surface conditions for the data: reservoir radius 8 km, effective oil-saturated thickness - 16m, open porosity coefficient - 0.16, initial oil saturation -0.8, oil formation volume factor - 1.15, degassed oil density - 830 kg / m3, oil density-640 kg / m3.
- 2. Determine oil recovery factor to be achieved by elastic forces while reducing the average reservoir pressure on 5 MPa for the following data: the effective thickness 15 m, porosity coefficient 0.13, liquid elasticity coefficient $2.7 \cdot 10^{-10}$ Pa⁻¹, rock elasticity coefficient -
- $2 \cdot 10^{-10}$ Pa⁻¹, initial oil saturation 0,78 the radius of the initial oil saturation -20000m.

Variant 10

- 1. Determine the initial oil and petroleum gas reserves in the field for the following data: oil productive area $2 \cdot 10 \text{ m}^2$, effective oil-saturated reservoir thickness 14 m, open porosity coefficient 0.14, oil saturation 0.75, oil formation volume factor 1.3, degassed oil density 850 kg/m³, solution gas-oil ratio 90 m³/m³.
- 2. Determine the cumulative oil production from deposits to be achieved by elastic forces while reducing the average reservoir pressure on 8,8 MPa for the following data: oil productive area $-5.7\cdot10^6\text{m}^2$, the effective thickness -30 m, porosity coefficient -0.15, oil elasticity coefficient $-1.58\cdot10^{-9}\text{ Pa}^{-1}$, water elasticity coefficient $-3.06\cdot10^{-10}\text{ Pa}^{-1}$, initial oil saturation -0.75. Oil layer is not deformed.

Variant 11

Determine the initial oil and petroleum gas reserves in the field for the following data: oil productive area - 2,5·10⁷ m², effective oil-saturated reservoir thickness - 15 m, open porosity coefficient - 0.12, oil saturation - 0.78, oil formation volume factor - 1.5, degassed oil density - 845 kg/m³, solution gas-oil ratio - 87 m³/m³.

2. Determine oil recovery factor which will be achieved by volumetric expansion drive for radial field development with initial oil-saturated reservoir radius -18000 m and aquifer zone radius -47 000 m if oil-saturated reservoir thickness is 17 m, open porosity coefficient- 0.13, initial oil saturation - 0.75, oil elasticity coefficient - $2 \cdot 10^{-9}$ Pa⁻¹, rock elasticity coefficient - $2 \cdot 10^{-10}$ Pa⁻¹, water elasticity coefficient - $4 \cdot 1 \cdot 10^{-10}$ Pa⁻¹, initial reservoir pressure - 42 MPa, bubble point pressure - 39 MPa.

Variant 12

- Determine initial oil reserves in the field for reservoir and surface conditions for the data: reservoir radius 6.5 km, effective oil-saturated thickness 12m, open porosity coefficient 0.17, initial oil saturation 0.75, oil formation volume factor 1.16, degassed oil density 850 kg / m³, oil density-620 kg/m³.
 - 2. Determine the cumulative oil production from deposits to be achieved by elastic forces while reducing the average reservoir pressure on 8,8 MPa for the following data: oil productive area $7 \cdot 10^6 \text{m}^2$, the effective thickness 28 m, porosity coefficient 0.17, oil elasticity coefficient $1,6 \cdot 10^{-9} \text{ Pa}^{-1}$, water elasticity coefficient $3,06 \cdot 10^{-10} \text{ Pa}^{-1}$, initial oil saturation 0,75. Oil layer is not deformed.

- Determine the initial oil and petroleum gas reserves in the field for the following data: oil productive area 2·10 m², effective oil-saturated reservoir thickness 15 m, open porosity coefficient 0.15, oil saturation 0.75, oil formation volume factor 1.4, degassed oil density 875 kg/m³, solution gas-oil ratio 80 m³/m³.
 - 2. Determine the cumulative oil production from deposits to be achieved by elastic forces while reducing the average reservoir pressure on 8,8 MPa for the following data: oil productive area $-5.7\cdot10^6\text{m}^2$, the effective thickness -30 m, porosity coefficient -0.15, oil elasticity coefficient $-1.58\cdot10^{-9}$ Pa⁻¹, water elasticity coefficient $-3.06\cdot10^{-10}$ Pa⁻¹, initial oil saturation -0.75. Oil layer is not deformed.

Variant 14

- Determine initial oil reserves in the field for reservoir and surface conditions for the data: reservoir radius 7 km, effective oil-saturated thickness 15m, open porosity coefficient 0.17, initial oil saturation 0.75, oil formation volume factor 1.16, degassed oil density 850 kg / m³, oil density-620 kg/m³.
- 2. Determine the cumulative oil production from deposits to be achieved by elastic forces while reducing the average reservoir pressure on 8,8 MPa for the following data: oil productive area $6\cdot10^6$ m², the effective thickness 28 m, porosity coefficient 0.15, oil elasticity coefficient 1,58·10⁻⁹ Pa⁻¹, water elasticity coefficient 3,06·10⁻¹⁰ Pa⁻¹, initial oil saturation 0,75. Oil layer is not deformed.

Variant 15

- Determine initial oil reserves in the field for reservoir and surface conditions for the data: reservoir radius 8 km, effective oil-saturated thickness - 16m, open porosity coefficient - 0.16, initial oil saturation -0.8, oil formation volume factor - 1.15, degassed oil density - 830 kg / m3, oil density-640 kg / m3.
- 2. Determine oil recovery factor which will be achieved by volumetric expansion drive for radial field development with initial oil-saturated reservoir radius -18000 m and aquifer zone radius -47 000 m if oil-saturated reservoir thickness is 17 m, open porosity coefficient- 0.13, initial oil saturation 0.75, oil elasticity coefficient 2·10⁻⁹ Pa⁻¹, rock elasticity coefficient 2·10⁻¹⁰ Pa⁻¹, water elasticity coefficient 4,1·10⁻¹⁰ Pa⁻¹, initial reservoir pressure 42 MPa, bubble point pressure 39 MPa.

Variant 16

 Determine initial oil reserves in the field for reservoir and surface conditions for the data: reservoir radius 8 km, effective oil-saturated thickness - 16m, open porosity coefficient - 0.16, initial oil saturation -0.8, oil formation volume factor - 1.15, degassed oil density - 830 kg / m3, oil density-640 kg / m3. 2. Determine how many liquid will be produced by volumetric expansion drive for radial field development with initial oil-saturated reservoir radius R=3 km, if oil-saturated reservoir thickness is h=30 m, initial reservoir pressure – $P_{init.}$ = 22 MPa, bubble point pressure – P_b = 17 MPa, oil dynamic viscosity coefficient – μ =2.2 mPa·s, reservoir of permeability –k= 0.2 D, piezoconductance coefficient – κ =0.3 m²/s.

- Determine the initial oil and petroleum gas reserves in the field for the following data: oil productive area 3·10⁷ m², effective oil-saturated reservoir thickness 12 m, open porosity coefficient 0.14, oil saturation 0.75, oil formation volume factor 1.5, degassed oil density 850 kg/m³, solution gas-oil ratio 85 m³/m³.
- 2. Determine oil recovery factor to be achieved by elastic forces while reducing the average reservoir pressure on 5 MPa for the following data: the effective thickness 15 m, porosity coefficient 0.13, liquid elasticity coefficient $2.7 \cdot 10^{-10}$ Pa⁻¹, rock elasticity coefficient -
- $2 \cdot 10^{-10}$ Pa⁻¹, initial oil saturation 0,78 the radius of the initial oil saturation -20000m.