1. Determine final gas recovery factor and gas cumulative production if the relationship between annual and total gas production has the form $\frac{Q_{piчH}}{Q_{3а\Pi}} = 3,34$

$$0.02 \frac{Q_{\text{сум}}}{Q_{_{3\text{AII}}}}$$
, % Initial gas reserves equal $50 \cdot 10^6 \text{ m}^3$.

2. Specify initial gas reserves that developed in gas drive if: reservoir temperature -70° C, gas gravity -0.59.

2

- 1. Determine current gas recovery factor of gas deposit on gas drive for the data: gas productive area $6\cdot10^8$ m², efficient gas-saturated reservoir thickness 15 m, initial gas saturation 0.75, open porosity coefficient 0.15, initial reservoir pressure 37 MPa, reservoir temperature 80 ° C, gas gravity 0.6, gas cumulative production from the field $65\cdot10^9$ m³.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of average production for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t)\cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t) \cdot 10^6 m^3$ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97

Initial gas reserves in gas field - 160·10⁶m³.

3

- 1. Determine current gas recovery factor for the gas field, which is developing in the gas drive for the following data: initial reservoir pressure is 42 MPa, the current reservoir pressure 18MPa, reservoir temperature 86°C, gas gravity 0.6.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of straight line for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t) \cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t) \cdot 10^6 m^3$ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97 Initial gas reserves in gas field - $135 \cdot 10^6 m^3$.

- 1. Determine initial gas reserves in gas field with reservoir radius 950m, initial gas saturation 0.8, effective porosity 0.16, reservoir thickness 25m, initial reservoir pressure 30MPa, reservoir temperature 68 ^oC, and gas gravity 0.6.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of average production for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t)\cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t) \ 10^6 m^3$ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97

Initial gas reserves in gas field - 148·10⁶m³.

5

- 1. Determine the initial gas reserves in the field according to the data of its development and current gas recovery factor, if cumulative gas production $50 \cdot 10^9$ m³, and the dependence of the reduced reservoir pressure (y) on cumulative gas production (x) is described by the equation: $30 \cdot 0.65 \cdot Q_{cum}$; P, MPa; Q_{cum} , 10^9 m³.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of of straight line for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t)\cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t)$ 10⁶m³ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97

Initial gas reserves in gas field - $137 \cdot 10^6 \text{m}^3$.

6

- 1. Gas reservoir is developing in gas drive. The dependence of the average reduced reservoir pressure described by the equation $\frac{P}{z}$ =25-0,6 Q_{cum} ; (P, MPa, Q_{cum} 10⁹ m³). Determine the initial gas reserves and the current gas recovery factor after reservoir pressure reduction by 30% from the initial pressure if the initial reservoir pressure 37 MPa, reservoir temperature 70°C, gas gravity 0.61.
- 2. Specify initial gas reserves that developed in gas drive if: reservoir temperature -50° C, gas gravity -0.58.

1. Determine final gas recovery factor and gas cumulative production if the relationship between annual and total gas production has the form $\frac{Q_{piчH}}{Q_{3all}} = 2,35$

$$0.01 \frac{Q_{\text{cym}}}{Q_{_{38\Pi}}}$$
, % Initial gas reserves equal $30 \cdot 10^6 \text{ m}^3$.

2. Specify initial gas reserves that developed in gas drive if: reservoir temperature -67° C, gas gravity -0.6.

8

- 1. Determine current gas recovery factor of gas deposit on gas drive for the data: gas productive area $-6.2\cdot10^8$ m², efficient gas-saturated reservoir thickness 15 m, initial gas saturation 0.76, open porosity coefficient 0.18, initial reservoir pressure 40 MPa, reservoir temperature 81 ° C, gas gravity 0.6, gas cumulative production from the field $65\cdot10^9$ m³.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of average production for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t)\cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t)$ 10⁶m³ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97

Initial gas reserves in gas field - $145 \cdot 10^6 \text{m}^3$.

9

- 1. Determine current gas recovery factor for the gas field, which is developing in the gas drive for the following data: initial reservoir pressure is 39 MPa, the current reservoir pressure 18MPa, reservoir temperature 82°C, gas gravity 0.54.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of straight line for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t)\cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t) \cdot 10^6 m^3$ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97

Initial gas reserves in gas field - $146 \cdot 10^6 \text{m}^3$.

- 1. Determine initial gas reserves in gas field with reservoir radius 970m, initial gas saturation 0.8, effective porosity 0.16, reservoir thickness 30m, initial reservoir pressure 30MPa, reservoir temperature 68 ^oC, and gas gravity 0.6.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of average production for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t)\cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t) \cdot 10^6 m^3$ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97

Initial gas reserves in gas field - 152·10⁶m³.

11

- 1. Determine the initial gas reserves in the field according to the data of its development and current gas recovery factor, if cumulative gas production $60 \cdot 10^9$ m³, and the dependence of the reduced reservoir pressure (y) on cumulative gas production (x) is described by the equation: $32-0.66 \cdot Q_{cum}$; P, MPa; Q_{cum} , 10^9 m³.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of of straight line for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t)\cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t) \cdot 10^6 m^3$ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97

Initial gas reserves in gas field - $151 \cdot 10^6 \text{m}^3$.

12

- 1. Gas reservoir is developing in gas drive. The dependence of the average reduced reservoir pressure described by the equation $\frac{P}{z}$ = 20-0,5 Q_{cum} ; (P, MPa, Q_{cum} 10⁹ m³). Determine the initial gas reserves and the current gas recovery factor after reservoir pressure reduction by 50% from the initial pressure if the initial reservoir pressure 37 MPa, reservoir temperature 70°C, gas gravity 0.6.
- 2. Specify initial gas reserves that developed in gas drive if: reservoir temperature -70° C, gas gravity -0.55.

1. Determine final gas recovery factor and gas cumulative production if the relationship between annual and total gas production has the form $\frac{Q_{piчH}}{Q_{3aII}} = 3,24$

$$0.01 \frac{Q_{\text{cym}}}{Q_{_{38\Pi}}}$$
, % Initial gas reserves equal $60 \cdot 10^6 \text{ m}^3$.

2. Specify initial gas reserves that developed in gas drive if: reservoir temperature -60° C, gas gravity -0.61.

14

- 1. Determine current gas recovery factor of gas deposit on gas drive for the data: gas productive area $7 \cdot 10^8$ m², efficient gas-saturated reservoir thickness 15 m, initial gas saturation 0.79, open porosity coefficient 0.18, initial reservoir pressure 40 MPa, reservoir temperature 80 ° C, gas gravity 0.6, gas cumulative production from the field $66 \cdot 10^9$ m³.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of average production for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t)\cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t)$ 10⁶m³ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97

Initial gas reserves in gas field - 154·10⁶m³.

15

- 1. Determine current gas recovery factor for the gas field, which is developing in the gas drive for the following data: initial reservoir pressure is 32 MPa, the current reservoir pressure 20MPa, reservoir temperature 85°C, gas gravity 0.57.
- 2. Determine current gas recovery factor and final gas recovery factor deposit on gas drive the method of straight line for the data:

Years 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
$$Q(t)\cdot 10^6 m^3$$
 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 $Q_{prod}(t) \cdot 10^6 m^3$ 1 3 6 10 15 21 28 36 45 55 64 72 79 85 90 94 97

Initial gas reserves in gas field - 136·10⁶m³.