LECTURE 13-14 INTEGRATED WATERFLOOD

PATTERN SELECTION & WELL SPACING

PATTERN SELECTION - IMPACTS

- Sweep efficiency
- Injectivity
- Flexibility to modify
- Regulators

SKEWED FOUR-SPOT

INVERTED NINE - SPOT

FIVE-SPOT

0-1-0-1-0-1-0

DIRECT LINE DRIVE STAGGERED LINE DRIVE

SEVEN-SPOT

INVERTED SEVEN-SPOT

PATTERN SELECTION – PERIPHERAL

- Injectors placed to supplement aquifer
- consider rock property variations near OWC
- Best when vertical communication and/or dip is high (gravity stable)
- Common for Shell offshore Gulf of Mexico
- Aquifer influx models
- Schilthuis 1936 (steady-state)
- van Everdingen & Hurst 1949 (un-steady-state)
- Carter-Tracy 1960 (un-steady-state)
- Fetkovitch 1971 (pseudo-steady-state)
- neglects the transient period
- popular
- fairly accurate
- Coats, Allard & Chen for bottom-water drive
- see Chapter 8 Craft, Hawkins & Terry for example calculations.
 - Strongly consider using numerical simulation

PATTERN SELECTION – PATTERN

- Lack of natural water drive
- Low dip
- Implies some degree of control
- Simple analytical models are available
 - various mobility ratios and well skins
 - simplifying assumptions
 - restricted on range of sensitivities
- Example of non-repeating patterns
 - Milne Point Field

PATTERNS -MILNE POINT FIELD (KUPARUK A-SAND)

PATTERN SELECTION – PATTERN (CONTINUED)

- Ensure reasonable hydraulic connectivity between the injector and producer
- Avoid short-circuits through fractures, thief zones and conductive faults
- Consider injector rows along axis of maximum horizontal stress
 - reduce short circuit via induced fractures
- Balance productivity & injectivity
- Additional considerations
 - fault/fractures
 - areal heterogeneity
 - reservoir anisotropy
 - mobility ratio (show streamlines)
 - pattern conversion flexibility needs
- SPE 75140 Producer to Injector Ratio by Hansen

WELL SPACING

- Economics!
- Hydraulic connectivity
- Permeability (effective)
- Anisotropy
- Stimulation techniques
 - acid stimulations
 - fracturing
- Well design & trajectory

WELL SPACING

- Injection above the fracturing gradient
 - increase water injectivity
 - reduce the number of injectors
 - monitor and control fracture growth
 - reduced sweep efficiency?
 - injection loss into non-target zones
 - proppant & proppantless injector fractures
 - thermal fracturing
 - many waterfloods operate under fracture conditions
- Recovery mechanisms
- Phased development with infill drilling

WELL PATTERNS, SPACING, & SWEEP EFFICIENCY

- Injector & producer
 - shortest streamline
 - highest pressure gradient
 - breakthrough only a fraction of the area has been swept
 - analytical solution for unit mobility
 - physical experiment for non-unit mobility
 - numerical simulation
 - finite difference
 - finite element (streamline simulation)
 - generates recovery efficiency value
 - show example

WELL PATTERNS, SPACING, & SWEEP EFFICIENCY

- Depleted for 6 years, then waterflood for 44 more years
- Inverted 9-Spot (injector & 8-producers)
- Effect of areal heterogeneity
 - Case I porosity (12%) and permeability (100 md.)
 - Case 2 porosity and permeability vary randomly
- Water saturation plots
 - red for maximum
 - blue for minimum

20 YEARS & CONSTANT PROPERTIES

50 YEARS & CONSTANT PROPERTIES

NON-CONSTANT PROPERTIES

20 YEARS & NON-CONSTANT PROPERTIES

50 YEARS & NON-CONSTANT PROPERTIES

WELL PATTERNS, SPACING, & SWEEP EFFICIENCY

- Simulation results quite idealized
- Heterogeneity in static properties still resulted in only slight skew in saturations
- Well operations were fixed
 - how realistic is this?
- History match model to account for differences
- Comfort in choosing new well locations?

WELL PATTERNS – ADDITIONAL INFLUENCES

- Existing well stock
 - a sidetrack may also provide a additional capabilities
- Surface & subsurface topography
- Well types
 - vertical, high slant, horizontal, designer
- Reservoir characteristics
 - gas cap
- Boundary conditions
 - subsurface (GDWFI)
 - surface
- Influenced primary recovery performance
 - detection of faults/fractures

INTEGRATED WATERFLOOD COURSE

Analytical Performance Predictions

WATERFLOODING – ANALYTICAL METHODS

- Buckley-Leverett Model
 - best suited for:
 - small-scale applications
 - moderately permeable
 - relatively light oil
 - reservoir layer is thinner than the capillary transition zone
 - flow instability due to viscous fingering is not present
 - key findings:
 - S_{orw} impacts ultimate recovery
 - relative permeability curves shapes are important
 - oil-wet reservoir: more injection needed to achieve ultimate recovery
 - higher oil viscosity: higher the water cut at breakthrough and the slower the oil recovery
 - large amount of water recycling even in homogeneous reservoir

WATERFLOODING – ANALYTICAL METHODS

Dietz Model

- Given small capillary pressures (e.g., high permeability sandstone) gravity segregates oil from injected water
- formula for calculating the tilt angle of the displacement front relative to the bedding of the reservoir
- a function of:
 - dimensionless gravity number
 - dip-angle
 - mobility ratio
- calculates the critical injection rate above which injected water will under-run the oil and form a tongue
- key finding: displacement is stable in a tilted reservoir when the mobility ratio is less than or equal to one

WATERFLOODING
- DIETZ MODEL

WATERFLOODING – ANALYTICAL METHODS

- Stiles and Dykstra-Parsons Models
 - first generation analytical technique useful for forecasting waterflood recovery in a layered reservoir
 - piston-like displacement
 - non-communicating layers.
 - rarely used in their original forms
 - recent adaptation replaced linear flow by radial flow in a 5-spot
 - key findings:
 - sensitive to permeability contrast between layers
 - Dykstra-Parsons coefficient
 - Lorentz coefficient

WATERFLOODING

– STILES AND

DYKSTRA-PARSONS

WATERFLOODING – BUCKLEY-LEVERETT WITH GRAVITY

- Gravity along the bedding plane is considered
- Capillary pressure gradients in this direction are ignored
- Can be no saturation change over the height the length of the capillary transition zone greatly exceeds the height of the formation
- Can be no "viscous fingering"
- Worked example in Shell Production Handbook Vol. 4

WATERFLOODING – DIETZ W/ SATURATION TRANSITION

- Combines Dietz with Buckley-Leverett
- Calculates shape of the displacement front together with the saturation transition behind the front
- Unstable displacements do not always occur even if the endpoint mobility ratio is unfavorable
- When calculating conditions of stable displacement and displacement front angles, the validity of simple models such as Dietz should first be verified

WATERFLOODING – STILES MODEL FOR 5-SPOT PATTERN

- Gardner's technique replaces the piston-like displacement of Stiles
- Radial frontal displacement in a pattern-flood situation
- Quick forecasts of oil recovery of a waterflood
- 5-spot pattern
- Uniform reservoir properties
- "Shell's Waterflood Spreadsheet"
- Variables:
 - Dykstra-Parsons coefficient
 - water-oil relative permeabilities
 - viscosities
 - initial gas saturation
- Shell Report EP 93-2361

INTEGRATED WATERFLOOD COURSE

Water Injectivity

WATER INJECTIVITY

- Injectivity: injection rate per unit pressure drop
- Analogous to productivity index for a producer
- Function of:
 - permeability
 - thickness
 - skin
 - pattern geometry
- Assuming unit mobility ratio, injectivity is independent of:
 - sweep efficiency
 - time
- Assuming non-unit mobility ratios the injectivity changes as the displacement progresses:
 - improves if M>I

WATER INJECTIVITY

 Theoretical change in injectivity M=4

WATER INJECTIVITY

- Analytical methods are over-simplified
- Severe limitations in their use
- Physical modelling would provide a more robust solution
- Analytical & physical models assume constant rock properties
- Fine-scale simulations
 - more complexities
 - variable properties
- History match field performance data

INTEGRATED WATERFLOOD COURSE

Integrated Reservoir Modeling

Reservoir Properties from Seismic

