LECTURE 13-14
INTEGRATED WATERFLOOD

PATTERN SELECTION & WELL SPACING




PATTERN SELECTION - IMPACTS

* Sweep efficiency

* Injectivity — r
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PATTERN SELECTION — PERIPHERAL

* Injectors placed to supplement aquifer

* consider rock property variations near OWC

* Best when vertical communication and/or dip is high (gravity stable)
¢ Common for Shell offshore Gulf of Mexico

* Aquifer influx models

* Schilthuis - 1936 (steady-state)

* van Everdingen & Hurst - 1949 (un-steady-state)

* Carter-Tracy - 1960 (un-steady-state)

* Fetkovitch — 1971 (pseudo-steady-state)

* neglects the transient period

* popular

e fairly accurate

* Coats,Allard & Chen for bottom-water drive




PATTERN SELECTION — PATTERN

Lack of natural water drive

Low dip

Implies some degree of control

Simple analytical models are available
* various mobility ratios and well skins
* simplifying assumptions

* restricted on range of sensitivities

Example of non-repeating patterns
* Milne Point Field
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PATTERN SELECTION — PATTERN (CONTINUED)

* Ensure reasonable hydraulic connectivity between the injector and producer
* Avoid short-circuits through fractures, thief zones and conductive faults

* Consider injector rows along axis of maximum horizontal stress
* reduce short circuit via induced fractures

* Balance productivity & injectivity

* Additional considerations
* fault/fractures
 areal heterogeneity
° reservoir anisotropy
* mobility ratio (show streamlines)
* pattern conversion flexibility needs

» SPE 75140 Producer to Injector Ratio by Hansen




WELL SPACING

Economics!
Hydraulic connectivity
Permeability (effective)
Anisotropy

Stimulation techniques
* acid stimulations

* fracturing

Well design & trajectory




WELL SPACING

* Injection above the fracturing gradient

increase water injectivity

reduce the number of injectors

monitor and control fracture growth
reduced sweep efficiency?

injection loss into non-target zones
proppant & proppantless injector fractures
thermal fracturing

many waterfloods operate under fracture conditions

* Recovery mechanisms

* Phased development with infill drilling




WELL PATTERNS, SPACING, & SWEEP EFFICIENCY

* Injector & producer
* shortest streamline
* highest pressure gradient
breakthrough only a fraction of the area has been swept

* analytical solution for unit mobility
* physical experiment for non-unit mobility
* numerical simulation

¢ finite difference

* finite element (streamline simulation)

e generates recovery efficiency value

* show example




WELL PATTERNS, SPACING, & SWEEP EFFICIENCY

* Depleted for 6 years, then waterflood for 44 more years

* Inverted 9-Spot (injector & 8-producers)

* Effect of areal heterogeneity
¢ Case | — porosity (12%) and permeability (100 md.)

¢ Case 2 — porosity and permeability vary randomly

*  Water saturation plots

* red for maximum

*  blue for minimum
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WELL PATTERNS, SPACING, & SWEEP EFFICIENCY

Simulation results quite idealized

Heterogeneity in static properties still resulted in only slight skew in saturations

Well operations were fixed

* how realistic is this?

History match model to account for differences

Comfort in choosing new well locations?




WELL PATTERNS —ADDITIONAL INFLUENCES

* Existing well stock

* asidetrack may also provide a additional capabilities
¢ Surface & subsurface topography

* Well types

* vertical, high slant, horizontal, designer

* Reservoir characteristics

* gascap

* Boundary conditions
* subsurface (GDWVFI)

* surface

* Influenced primary recovery performance

* detection of faults/fractures
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Analytical Performance Predictions
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WATERFLOODING - ANALYTICAL METHODS

* Buckley-Leverett Model
* best suited for:

* small-scale applications
* moderately permeable
* relatively light oil
* reservoir layer is thinner than the capillary transition zone
* flow instability due to viscous fingering is not present
* key findings:
e S, impacts ultimate recovery
* relative permeability curves shapes are important
* oil-wet reservoir: more injection needed to achieve ultimate recovery

* higher oil viscosity: higher the water cut at breakthrough and the slower the oil recovery

* large amount of water recycling even in homogeneous reservoir




WATERFLOODING - ANALYTICAL METHODS

* Dietz Model

* Given small capillary pressures (e.g., high permeability sandstone) gravity segregates oil from
injected water

* formula for calculating the tilt angle of the displacement front relative to the bedding of the
reservoir
* a function of:
¢ dimensionless gravity number
* dip-angle
* mobility ratio
* calculates the critical injection rate above which injected water will under-run the oil and form a
tongue

* key finding: displacement is stable in a tilted reservoir when the mobility ratio is less than or equal




WATERFLOODING
— DIETZ MODEL




WATERFLOODING - ANALYTICAL METHODS

* Stiles and Dykstra-Parsons Models

* first generation analytical technique useful for forecasting waterflood recovery in a layered
reservoir

* piston-like displacement
* non-communicating layers.
* rarely used in their original forms
* recent adaptation replaced linear flow by radial flow in a 5-spot
* key findings:
* sensitive to permeability contrast between layers

* Dykstra-Parsons coefficient

* Lorentz coefficient




Homogeneous Reservoir Heterogeneous Reservoir

WATERFLOODING
— STILES AND
DYKSTRA-PARSONS

Low Dykstra-Parsons High Dykstra -Parsons
Coefficient Coefficient




WATERFLOODING — BUCKLEY-LEVERETT WITH GRAVITY

Gravity along the bedding plane is considered

Capillary pressure gradients in this direction are ignored

Can be no saturation change over the height - the length of the capillary transition zone

greatly exceeds the height of the formation

Can be no "viscous fingering*

Worked example in Shell Production Handbook Vol. 4




WATERFLOODING — DIETZ W/ SATURATION
TRANSITION

* Combines Dietz with Buckley-Leverett

* Calculates shape of the displacement front together with the saturation transition behind
the front

* Unstable displacements do not always occur even if the endpoint mobility ratio is

unfavorable

* When calculating conditions of stable displacement and displacement front angles, the

validity of simple models such as Dietz should first be verified




WATERFLOODING — STILES MODEL FOR 5-SPOT
PATTERN

* Gardner’s technique replaces the piston-like displacement of Stiles
* Radial frontal displacement in a pattern-flood situation

* Quick forecasts of oil recovery of a waterflood

* 5-spot pattern

* Uniform reservoir properties

¢ “Shell's Waterflood Spreadsheet”

* Variables:
* Dykstra-Parsons coefficient
¢ water-oil relative permeabilities

* viscosities

* initial gas saturation

* Shell Report EP 93-2361
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* Water Injectivity




WATER INJECTIVITY

Injectivity: injection rate per unit pressure drop

Analogous to productivity index for a producer

Function of:
* permeability
* thickness
* skin

* pattern geometry

* Assuming unit mobility ratio, injectivity is independent of:
* sweep efficiency

°* time

 Assuming non-unit mobility ratios the injectivity changes as the displacement progresses:

* improves if M>|
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WATER INJECTIVITY

Analytical methods are over-simplified

Severe limitations in their use

Physical modelling would provide a more robust solution

Analytical & physical models assume constant rock properties

Fine-scale simulations
* more complexities

* variable properties

History match field performance data
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Integrated Reservoir Modeling
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Res ervor Chearexcteris aion-
Pore Systems
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One Grid Block in
Reservoir Simuwlation
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Reservoir Properties from S eis mic

Porosity from Sparse Spike
Inversion
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Volume of rock
fractured prior
to through-
going fault slip
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2002
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significantly
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