PRACTICE 2

1. Two wells work in a layer. Flow rate of the first well is 19 tons/day, flow rate of the second well of 22 tons/day. Determine the change in pressure in 65 days after their work for the data: the coefficient of dynamic viscosity 2.7 mPa·s, layer thickness 19 m, the permeability coefficient 0.07 mkm², the piezoconductivity factor 0.42 m²/s, density of oil 860 kg/m³, the volume formation factor - 1.3. The distance from the first and second wells to the point at which pressure is determined by changing the 810 m and 620 m respectively.

 $Q_1=19 \text{ tons/day}$

Q₂=22 tons/day

t=65 days

 μ =2.7 mPa·s

h=19 m

 $k=0.07 \text{ mkm}^2$

 $\chi = 0.42 \text{ m}^2/\text{s}$

 ρ =860 kg/m³

b = 1.3

 $r_1 = 810 \text{ m}$

 $r_2 = 620 \text{ m}$

 ΔP -?

$$P(r,t) = P_f - \left(\frac{Q_1 \cdot \mu}{4 \cdot \pi \cdot k \cdot h} \cdot \ln \frac{2,25 \cdot \chi \cdot t}{r_1^2} + \frac{Q_2 \cdot \mu}{4 \cdot \pi \cdot k \cdot h} \cdot \ln \frac{2,25 \cdot \chi \cdot t}{r_2^2}\right)$$

$$\Delta P = \frac{Q_1 \cdot \mu}{4 \cdot \pi \cdot k \cdot h} \cdot \ln \frac{2,25 \cdot \chi \cdot t}{r_1^2} + \frac{Q_2 \cdot \mu}{4 \cdot \pi \cdot k \cdot h} \cdot \ln \frac{2,25 \cdot \chi \cdot t}{r_2^2}$$

$$\Delta P = \frac{19 \cdot 1000 \cdot 1.3 \cdot 2.7 \cdot 10^{-3}}{86400 \cdot 860 \cdot 4 \cdot \pi \cdot 0.07 \cdot 10^{-12} \cdot 19} \cdot \ln \frac{2,25 \cdot 0.42 \cdot 65 \cdot 86400}{810^{2}} + \frac{1}{1000} \cdot 1000 \cdot 10000 \cdot 1000 \cdot 1000 \cdot 10000 \cdot 1000 \cdot 1000$$

$$+\frac{22\cdot 1000\cdot 1.3\cdot 2.7\cdot 10^{-3}}{86400\cdot 860\cdot 4\cdot \pi\cdot 0.07\cdot 10^{-12}\cdot 19}\cdot ln\frac{2,25\cdot 0.42\cdot 65\cdot 86400}{620^2}=$$

2. In operation let the oil well with a constant flow rate. What is the pressure bottomhole and at a distance for some time such data

well flow rate 25 t/d initial reservoir pressure 30 MPa well radius of 0.12 m; permeability coefficient 0.012 mkm² layer thickness 19 m

porosity of 22%;

coefficient of dynamic viscosity of oil 1.13 mPa·s volume factor 1.07 relative density 0.81 time varies 35 days compressibility factor of oil 2.2 ·10⁻⁹ Pa⁻¹ compressibility factor of rocks 2.7 ·10⁻¹⁰ Pa⁻¹ distance from the wells 200 m

 $\begin{array}{l} Q{=}25 \text{ t/d} \\ P_f{=}30 \text{ MPa} \\ r_w{=}0.12 \text{ m} \\ k{=}0.012 \text{ mkm}^2 \\ h{=}19 \text{ m} \\ m{=}0.22 \\ \mu{=}1.13 \text{ mPa}{\cdot}\text{s} \\ b{=}1.07 \\ \hline \rho{=}0.81 \\ t{=}35 \text{ days} \\ \beta_{oil}{=}2.2 \cdot 10^{-10} \text{ Pa}^{-1} \\ \beta_r{=}2.7 \cdot 10^{-10} \text{ Pa}^{-1} \\ r{=}200 \text{ m} \\ P_{bh}{-}? P(t,r){-}? \end{array}$

$$\begin{split} P(t,r) &= P_f - \frac{Q_f \cdot \mu}{4 \cdot \pi \cdot k \cdot h} \cdot \ln \frac{2.25 \cdot \chi \cdot t}{r_w^2} \\ P_{bh} &= P_f - \frac{Q_f \cdot \mu}{4 \cdot \pi \cdot k \cdot h} \cdot \ln \frac{2.25 \cdot \chi \cdot t}{r_w^2} \\ Q_f &= \frac{Q \cdot 1000 \cdot b}{\rho \cdot 86400} = \frac{25 \cdot 1000 \cdot 1.07}{0.81 \cdot 1000 \cdot 86400} = 3.822 \cdot 10^{-4} \, \text{m}^3/\text{s} \\ \overline{\rho} &= \frac{P_{oil}}{\rho_w} \quad \rho_{oil} &= \overline{\rho} \cdot 1000 \\ \chi &= \frac{k}{\mu \cdot \beta^*} = \frac{0.012 \cdot 10^{-12}}{1.13 \cdot 10^{-3} \cdot 3.184 \cdot 10^{-10}} = 0.033 \\ \beta^* &= m \cdot \beta_{oil} + \beta_r = 0.22 \cdot 2.2 \cdot 10^{-10} + 2.7 \cdot 10^{-10} = 3.184 \cdot 10^{-10} \\ P(t,r) &= 30 \cdot 10^6 - \frac{3.8822 \cdot 10^{-4} \cdot 1.13 \cdot 10^{-3}}{4 \cdot \pi \cdot 0.012 \cdot 10^{-12} \cdot 19} \cdot \ln \frac{2.25 \cdot 0.033 \cdot 35 \cdot 86400}{200^2} = 29.74 \cdot 10^6 \, \text{Pa} \\ P_{bh} &= 30 \cdot 10^6 - \frac{3.8822 \cdot 10^{-4} \cdot 1.13 \cdot 10^{-3}}{4 \cdot \pi \cdot 0.012 \cdot 10^{-12} \cdot 19} \cdot \ln \frac{2.25 \cdot 0.033 \cdot 35 \cdot 86400}{0.12^2} = 27.498 \cdot 10^6 \, \text{Pa} \end{split}$$

3. Determine elastic reserves of oil inside the separated oil-bearing area of 400000 m^2 , thickness of production layer 16 m, if the average reservoir pressure dropped by 5 MPa. Known values: reservoir porosity 15%, saturation factor of reservoir bound water 19%, compressibility factors of oil, water and rock correspondently $2,04\cdot10^{-9} \text{ Pa}^{-1}$, $4,59\cdot10^{-10} \text{ Pa}^{-1}$ and $1,02\cdot10^{-10} \text{ Pa}^{-1}$.

compressibility factors of liquid

$$\beta_l = \beta_{oil} \cdot (1 - s_w) + \beta_w \cdot s_w = 2,04 \cdot 10^{-9} \cdot (1 - 0,19) + 4,59 \cdot 10^{-10} \cdot 0,19 = 1,74 \cdot 10^{-9} Pa^{-1}$$
 compressibility factors of reservoir

$$\beta^* = m \cdot \beta_l + \beta_r = 0.15 \cdot 1.74 \cdot 10^{-9} + 1.02 \cdot 10^{-10} = 3.63 \cdot 10^{-10} Pa^{-1}$$
 Volume of reservoir
$$V_{res} = F \cdot h = 400000 \cdot 16 = 64 \cdot 10^5 m^2$$
 elastic reserves of oil
$$V_{oil} = V_{res} \cdot \beta^* \cdot \Delta p = 64 \cdot 10^5 \cdot 3.63 \cdot 10^{-10} \cdot 5 \cdot 10^6 = 11616 \, m^2$$

4. Oil well has a production rate 70 t/day. What will be the bottomhole pressure and pressure at the distance 120 m in 5 days? Known values: initial reservoir pressure 22 MPa, well radius 0,1 m, permeability 0,07 mcm², thickness 16 m, porosity 18%, dynamic viscosity of oil 1,2 mPa·s; volume factor and density of degassed oil are 1,1 and 900 kg/m³, compressibility factors of oil and rock correspondently $2,2\cdot10^{-9}$ Pa⁻¹ and $1,02\cdot10^{-10}$ Pa⁻¹.

$$Q_{oil,vol} = \frac{Q_m \cdot b \cdot 1000}{\rho_{oil} \cdot 86400} = \frac{70 \cdot 1,1 \cdot 1000}{900 \cdot 86400} = 9,9 \cdot 10^{-4} \frac{m^3}{s}$$

Piezoconductivity factor

$$\kappa = \frac{k}{\mu \beta^*} = \frac{k}{\mu (\beta_{oil} \cdot m + \beta_r)} = \frac{0.07 \cdot 10^{-12}}{2.2 \cdot 10^{-9} \cdot (2.2 \cdot 10^{-9} \cdot 0.16 + 1.02 \cdot 10^{-10})} = 0.117 \frac{m^2}{s}$$

Bottomhole pressure

$$P_{bh} = P_{res} - \frac{Q_{oil.vol}\mu}{4\pi kh} \ln\left(\frac{2,25\kappa t}{r_w^2}\right) = 22 \cdot 10^6 - \frac{9,9 \cdot 10^{-4} \cdot 1,2 \cdot 10^{-3}}{4 \cdot 3,14 \cdot 0,07 \cdot 10^{-12} \cdot 16} \cdot \ln\left(\frac{2,25 \cdot 0,117 \cdot 5 \cdot 86400}{0,1^2}\right) = 21,865MPa$$

Pressure at the distance 120 m

$$P_{r} = P_{res} - \frac{Q_{oil.vol}\mu}{4\pi kh} \ln\left(\frac{2,25\kappa t}{r^{2}}\right) = 22 \cdot 10^{6} - \frac{9,9 \cdot 10^{-4} \cdot 1,2 \cdot 10^{-3}}{4 \cdot 3,14 \cdot 0,07 \cdot 10^{-12} \cdot 16} \cdot \ln\left(\frac{2,25 \cdot 0,117 \cdot 5 \cdot 86400}{120^{2}}\right) = 21,933MPa$$

5. What is the pressure at the distance 300 m from the well after 100 day of development at elastic water drive? Flow rate of the well is 50 t/day. Reservoir pressure 23 MPa, piezoconductivity factor 1,2 m²/s, formation conductivity 10⁻⁹ m³/Pa·s, oil density 830 kg/m³.

$$Q_{oil.vol} = \frac{Q_m \cdot 1000}{\rho_{oil} \cdot 86400} = 6,97 \cdot 10^{-4} \frac{m^3}{s}$$

$$\varepsilon = \frac{kh}{\mu}$$

$$P_r = P_{res} - \frac{Q_{oil.vol} \mu}{4\pi kh} \ln\left(\frac{2,25\kappa t}{r^2}\right) = P_{res} - \frac{Q_{oil.vol}}{4\pi \varepsilon} \ln\left(\frac{2,25\kappa t}{r^2}\right) = 22,69MPa$$