VARIANT 10

In operation let the oil well with a constant flow rate. What is the pressure bottomhole and at a distance for some time such data

well flow rate changes from 20 t/d with a step of 2 t/d;

initial reservoir pressure changes from 17 MPa with a step of 0.5 MPa;

well radius of 0.1 m;

permeability coefficient changes from 0.09 mkm² with a step of 0.01 mkm²;

layer thickness changes from 8 m with a step of 0.5 m;

porosity of 20%;

coefficient of dynamic viscosity of oil changes from 1.2 mPa·s with a step of 0.05 mPa·s;

volume factor changes from 1.05 with a step of 0.05;

relative density 0.85;

time varies changes from 5 days with a step of 1day;

compressibility factor of oil changes from 2.1 ·10⁻⁹ Pa⁻¹ with a step of 0.05 ·10⁻⁹ Pa⁻¹;

compressibility factor of rocks changes from $2.4 \cdot 10^{-10} \text{ Pa}^{-1}$ with a step of 0.05 $\cdot 10^{-10} \text{ Pa}^{-1}$

distance from the wells changes from 50 m with a step of 10 m.

Problem 2

Flow rate

$$Q := 20 + 2.9$$

$$Q = 38 \frac{ton}{day}$$

Initial reservoir pressure

Pinres :=
$$(17 + 0.5 \cdot 9) \cdot 10^6$$

Pinres =
$$2.15 \times 10^7$$
 Pa

Well radius

$$rw := 0.1$$

permeability cofficient

$$k := (0.09 + 0.01 \cdot 9) \cdot 10^{-12}$$

$$k = 1.8 \times 10^{-13}$$
 m

Thickness

$$h := 8 + 0.5.9$$

$$h = 12.5$$
 m

Porosity

$$m := 20\%$$

$$m = 0.2$$

Dynamic viscosity of oil $\mu o := 1.2 + 0.05.9$

$$\mu$$
o := 1.2 + 0.05 · 9

$$\mu_0 := 1.4 \cdot 10^{-3}$$
 pa·s

Volume factor

$$B := 1.05 + 0.05.9$$

$$B = 1.5$$

Density

$$\rho := 0.85$$

Time

$$t := 5 + 1.9$$

$$t = 14$$

$$t_{\infty} := 9.86400 = 7.776 \times 10^5$$
 s

Compressibility factor of oil

$$\beta$$
o := $2.1 \cdot 10^{-9} + 0.05 \cdot 10^{-9} \cdot 9$

$$\beta$$
o = 2.55 × 10⁻⁹ Pa⁻¹

Compressibility factor of Rock

$$\beta r := 2.4 \cdot 10^{-9} + 0.05 \cdot 10^{-9} \cdot 9$$

 $\beta r = 2.85 \times 10^{-9} \cdot 10^{-9}$

Distance

$$r := 50 + 10.9$$

$$r = 140 \text{ m}$$

pressure at distance Pr

solution

$$\beta := m \cdot \beta o + \beta r$$

$$\chi := \frac{k}{\mu o \cdot \beta} \; explicit \; , \\ ALL \; \; = \; \frac{\left(0.09 + 0.01 \cdot 9\right) \cdot 10^{-12}}{1.4 \cdot 10^{-3} \cdot \left[20 \cdot \% \cdot \left(2.1 \cdot 10^{-9} + 0.05 \cdot 10^{-9} \cdot 9\right) + 2.4 \cdot 10^{-9} + 0.05 \cdot 10^{-9} \cdot 9\right]} \; = \; 0.0 \; \frac{m^2}{2} \; .$$

$$Qv := \frac{Q \cdot B}{\rho \cdot 86400} = 7.761 \times 10^{-4}$$

Pbh := Pinres
$$-\frac{Qv \cdot \mu o}{4 \cdot \pi \cdot k \cdot h} \cdot ln \left(\frac{2.25\chi \cdot t}{rw^2}\right) = 2.09 \times 10^7$$
 Pa

Pr := Pinres
$$-\frac{Qv \cdot \mu o}{4 \cdot \pi \cdot k \cdot h} \cdot ln \left(\frac{2.25 \cdot \chi \cdot t}{r^2}\right) = 2.145 \times 10^7$$
 Pa