Strip deposit is developed by one row of wells under water drive. Determine the flow rates of the row wells for data:

width of deposit 2500 m,

length 6000 m,

the distance between drainage boundary and WOC - 400 m with a step of 50 m. the distance between the initial and the current position of the WOC 200 m with a step of 50 m.

the distance between current position of the WOC and the first row of wells – 5400 m with a step of 50 m.

the number of wells in the first row 16 with a step of 1.

the formation pressure 24 MPa with a step of 0.5 MPa,

bottom-hole pressures in the first row 19 MPa with a step of 0.5 MPa,

coefficient of permeability 18 D with a step of 5 mD,

thickness 19 m,

the coefficient of dynamic viscosity oil and water 2.5 mPa·s and 1.2 mPa·s, respectively,

reduce radius of wells 10 cm.

bound water saturation of 0.17;

residual oil saturation of 0.28.

Problem 7

Width, m B := 2500 m

Length, m L = 6000 m

Distance between the oil drainage boundary to WOC, m

$$L_{ow} := 400 + 50.9 = 850$$
 m

Distance between the initial and current position of the WOC, m

$$L_{\text{wf}} := 200 + 50.9 = 650$$
 m

Distance between the current position of WOC and the first row of wells, m

$$L_{w1} := 5400 + 50.9 = 5.85 \times 10^3$$
 m

Number of wells in the first row

$$n := 16 + 9 \cdot 1 = 25$$

Reservoir Permeability, m2

$$k := (18000 + 5.9) \cdot 10^{-15} = 1.805 \times 10^{-11}$$
 m²

Formation or reservoir Pressure, Pa

$$P_r := (24 + 0.5 \cdot 9) \cdot 10^6 = 2.85 \times 10^7$$
 Pa

Bottom hole Pressure, Pa

$$P_h := (19 + 0.5.9) \cdot 10^6 = 2.35 \times 10^7$$
 Pa

Coefficient of Dynamic Viscosity of Oil, Pa.s

$$\mu_0 := 2.5 \cdot 10^{-3} \quad \text{Pa·s}$$

Coefficient of Dynamic Viscosity of Water, Pa.s

$$\mu_W \coloneqq 1.2 \cdot 10^{-3} \quad Pa \cdot s$$

Radius Wells, m

$$r_{W} := 0.1$$
 m

Residual oil saturation

$$S_{ro} := 0.28$$

Saturation of bound water

$$S_{bw} := 0.17$$

Solution

$$\Omega_{dw} := \frac{\mu_w \cdot L_{ow}}{B \cdot k \cdot h} \tag{7.1}$$

$$\Omega_{\text{daw}} := \frac{1.2 \cdot 10^{-3} \cdot 850}{2500 \cdot 1.805 \cdot 10^{-11} \cdot 19} = 1.19 \times 10^{6} \qquad \frac{\text{Pa} \cdot \text{s}}{\text{m}^{3}}$$

$$\Omega_{\text{W1}} := \frac{\mu_0 \cdot L_{\text{W1}}}{B \cdot k \cdot h} \tag{7.2}$$

$$\Omega_{\text{WML}} := \frac{2.5 \cdot 10^{-3} \cdot 5.85 \cdot 10^{3}}{2500 \cdot 1.805 \cdot 10^{-11} \cdot 19} = 1.706 \times 10^{7} \qquad \frac{\text{Pa·s}}{\text{m}^{3}}$$

$$\Omega_{\text{wf}} := \frac{\mu_0 \cdot L_{\text{wf}}}{B \cdot k \cdot h} \tag{7.3}$$

$$\Omega_{\text{wwfs}} := \frac{2.5 \cdot 10^{-3} \cdot 650}{2500 \cdot 1.803 \cdot 10^{-11} \cdot 19} = 1.897 \times 10^{6} \frac{\text{Pa·s}}{\text{m}^{3}}$$

$$\sigma := \frac{B}{2 \cdot n} \tag{7.4}$$

$$\omega_1 = \frac{\mu_0 \cdot \ln\left(\frac{\sigma}{\pi \cdot r_W}\right)}{2 \cdot \pi \cdot k \cdot h \cdot n} \tag{7.5}$$

$$\omega_1 := \frac{2.5 \cdot 10^{-3} \cdot \ln \left(\frac{50}{\pi \cdot 0.1} \right)}{2 \cdot \pi \cdot 1.805 \cdot 10^{-11} \cdot 19 \cdot 25} = 2.353 \times 10^5 \frac{\text{Pa·s}}{\text{m}^3}$$

$$Z_{f} := 0.18$$

$$\alpha := \frac{\mu_{\rm W}}{\mu_{\rm O}} \cdot \left(1.7 + 8Z_{\rm f} + 25 \cdot Z_{\rm f}^2 \right) \tag{7.6}$$

$$\alpha := \frac{1.2}{2.5} \cdot \left[1.7 + 8.0.18 + 25.(0.18)^2 \right] = 1.896$$

$$P_{r} - P_{b} = Q \cdot \left(\Omega_{d.w} + \Omega_{w.f} \cdot \alpha + \Omega_{w1} + \omega_{1}\right) \qquad (7.7)$$

$$Q := \frac{P_r - P_b}{\left(\Omega_{dw} + \Omega_{wf} \cdot \alpha + \Omega_{w1} + \omega_1\right)}$$
 (7.8)

$$Q := \frac{2.85 \cdot 10^7 - 2.35 \cdot 10^7}{\left(1.19 \cdot 10^6 + 1.817 \cdot 10^6 \cdot 1.896 + 1.706 \cdot 10^7 + 2.353 \cdot 10^5\right)} = 0.228 \qquad \frac{m^3}{s}$$

Conclusion

I applied Kirchhoff during my calculations I found the flow rates of the row wells (Q=0,228 m3/s) that affirmate the strip deposit is developed by one row of wells under water drive