

Praise for Agile Testing

“As Agile methods have entered the mainstream, we’ve learned a lot about how the
testing discipline fits into Agile projects. Lisa and Janet give us a solid look at what to
do, and what to avoid, in Agile testing.”

—Ron Jeffries, www.XProgramming.com

“An excellent introduction to agile and how it affects the software test community!”

—Gerard Meszaros, Agile Practice Lead and Chief Test Strategist at Solution
Frameworks, Inc., an agile coaching and lean software development consultancy

“In sports and music, people know the importance of practicing technique until it
becomes a part of the way they do things. This book is about some of the most funda-
mental techniques in software development—how to build quality into code—tech-
niques that should become second nature to every development team. The book
provides both broad and in-depth coverage of how to move testing to the front of the
development process, along with a liberal sprinkling of real-life examples that bring
the book to life.”

—Mary Poppendieck, Author of Lean Software Development and Implementing Lean
Software Development

“Refreshingly pragmatic. Chock-full of wisdom. Absent of dogma. This book is a game-
changer. Every software professional should read it.”

—Uncle Bob Martin, Object Mentor, Inc.

“With Agile Testing, Lisa and Janet have used their holistic sensibility of testing to de-
scribe a culture shift for testers and teams willing to elevate their test effectiveness.
The combination of real-life project experiences and specific techniques provide an
excellent way to learn and adapt to continually changing project needs.”

—Adam Geras, M.Sc. Developer-Tester, Ideaca Knowledge Services

“On Agile projects, everyone seems to ask, ‘But, what about testing?’ Is it the develop-
ment team’s responsibility entirely, the testing team, or a collaborative effort between
developers and testers? Or, ‘How much testing should we automate?’ Lisa and Janet
have written a book that finally answers these types of questions and more! Whether
you’re a tester, developer, or manager, you’ll learn many great examples and stories
from the real-world work experiences they’ve shared in this excellent book.”

—Paul Duvall, CTO of Stelligent and co-author of Continuous Integration: Improving
Software Quality and Reducing Risk

“Finally a book for testers on Agile teams that acknowledges there is not just one
right way! Agile Testing provides comprehensive coverage of the issues testers face
when they move to Agile: from tools and metrics to roles and process. Illustrated with
numerous stories and examples from many contributors, it gives a clear picture of
what successful Agile testers are doing today.”

—Bret Pettichord, Chief Technical Officer of WatirCraft and Lead Developer of Watir

This page intentionally left blank

AGILE TESTING

This page intentionally left blank

AGILE TESTING

A PRACTICAL GUIDE FOR TESTERS
AND AGILE TEAMS

Lisa Crispin
Janet Gregory

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Crispin, Lisa.
Agile testing : a practical guide for testers and agile teams /

Lisa Crispin, Janet Gregory. — 1st ed.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-321-53446-0 (pbk. : alk. paper)
ISBN-10: 0-321-53446-8 (pbk. : alk. paper) 1. Computer software—

Testing. 2. Agile software development. I. Gregory, Janet. II. Title.

QA76.76.T48C75 2009
005.1—dc22

2008042444

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-53446-0
ISBN-10: 0-321-53446-8
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing, December 2008

To my husband, Bob Downing—you’re the bee’s knees!

—Lisa

To Jack, Dana, and Susan, and to all the writers in my family.

—Janet

And to all our favorite donkeys and dragons.

—Lisa and Janet

This page intentionally left blank

ix

CONTENTS

Foreword by Mike Cohn xxiii

Foreword by Brian Marick xxv

Preface xxvii

Acknowledgments xxxvii

About the Authors xli

Part I Introduction 1

Chapter 1 What Is Agile Testing, Anyway? 3
Agile Values 3
What Do We Mean by “Agile Testing”? 4
A Little Context for Roles and Activities on an Agile Team 7

Customer Team 7
Developer Team 7
Interaction between Customer and Developer Teams 8

How Is Agile Testing Different? 9
Working on Traditional Teams 9
Working on Agile Teams 10
Traditional vs. Agile Testing 12

Whole-Team Approach 15
Summary 17

Chapter 2 Ten Principles for Agile Testers 19
What’s an Agile Tester? 19
The Agile Testing Mind-Set 20

x CONTENTS

Applying Agile Principles and Values 21
Provide Continuous Feedback 22
Deliver Value to the Customer 22
Enable Face-to-Face Communication 23
Have Courage 25
Keep It Simple 26
Practice Continuous Improvement 27
Respond to Change 28
Self-Organize 29
Focus on People 30
Enjoy 31

Adding Value 31
Summary 33

Part II Organizational Challenges 35

Chapter 3 Cultural Challenges 37
Organizational Culture 37

Quality Philosophy 38
Sustainable Pace 40
Customer Relationships 41
Organization Size 42
Empower Your Team 44

Barriers to Successful Agile Adoption by Test/QA Teams 44
Loss of Identity 44
Additional Roles 45
Lack of Training 45
Not Understanding Agile Concepts 45
Past Experience/Attitude 48
Cultural Differences among Roles 48

Introducing Change 49
Talk about Fears 49
Give Team Ownership 50
Celebrate Success 50

Management Expectations 52
Cultural Changes for Managers 52
Speaking the Manager’s Language 55

Change Doesn’t Come Easy 56
Be Patient 56
Let Them Feel Pain 56

CONTENTS xi

Build Your Credibility 57
Work On Your Own Professional Development 57
Beware the Quality Police Mentality 57
Vote with Your Feet 57

Summary 58

Chapter 4 Team Logistics 59
Team Structure 59

Independent QA Teams 60
Integration of Testers into an Agile Project 61
Agile Project Teams 64

Physical Logistics 65
Resources 66

Tester-Developer Ratio 66
Hiring an Agile Tester 67

Building a Team 69
Self-Organizing Team 69
Involving Other Teams 69
Every Team Member Has Equal Value 70
Performance and Rewards 70
What Can You Do? 71

Summary 71

Chapter 5 Transitioning Typical Processes 73
Seeking Lightweight Processes 73
Metrics 74

Lean Measurements 74
Why We Need Metrics 75
What Not to Do with Metrics 77
Communicating Metrics 77
Metrics ROI 78

Defect Tracking 79
Why Should We Use a Defect Tracking System (DTS)? 80
Why Shouldn’t We Use a DTS? 82
Defect Tracking Tools 83
Keep Your Focus 85

Test Planning 86
Test Strategy vs. Test Planning 86
Traceability 88

xii CONTENTS

Existing Processes and Models 88
Audits 89
Frameworks, Models, and Standards 90

Summary 93

Part III The Agile Testing Quadrants 95

Chapter 6 The Purpose of Testing 97
The Agile Testing Quadrants 97

Tests that Support the Team 98
Tests that Critique the Product 101

Knowing When a Story Is Done 104
Shared Responsibility 105

Managing Technical Debt 106
Testing in Context 106
Summary 108

Chapter 7 Technology-Facing Tests that Support the Team 109
An Agile Testing Foundation 109

The Purpose of Quadrant 1 Tests 110
Supporting Infrastructure 111

Why Write and Execute These Tests? 112
Lets Us Go Faster and Do More 112
Making Testers’ Jobs Easier 114
Designing with Testing in Mind 115
Timely Feedback 118

Where Do Technology-Facing Tests Stop? 119
What If the Team Doesn’t Do These Tests? 121

What Can Testers Do? 121
What Can Managers Do? 122
It’s a Team Problem 123

Toolkit 123
Source Code Control 123
IDEs 124
Build Tools 126
Build Automation Tools 126
Unit Test Tools 126

Summary 127

CONTENTS xiii

Chapter 8 Business-Facing Tests that Support the Team 129
Driving Development with Business-Facing Tests 129
The Requirements Quandary 132

Common Language 134
Eliciting Requirements 135
Advance Clarity 140
Conditions of Satisfaction 142
Ripple Effects 143

Thin Slices, Small Chunks 144
How Do We Know We’re Done? 146
Tests Mitigate Risk 147
Testability and Automation 149
Summary 150

Chapter 9 Toolkit for Business-Facing Tests that
Support the Team 153

Business-Facing Test Tool Strategy 153
Tools to Elicit Examples and Requirements 155

Checklists 156
Mind Maps 156
Spreadsheets 159
Mock-Ups 160
Flow Diagrams 160
Software-Based Tools 163

Tools for Automating Tests Based on Examples 164
Tools to Test below the GUI and API Level 165
Tools for Testing through the GUI 170

Strategies for Writing Tests 177
Build Tests Incrementally 178
Keep the Tests Passing 179
Use Appropriate Test Design Patterns 179
Keyword and Data-Driven Tests 182

Testability 183
Code Design and Test Design 184
Automated vs. Manual Quadrant 2 Tests 185

Test Management 186
Summary 186

Chapter 10 Business-Facing Tests that Critique the Product 189
Introduction to Quadrant 3 190
Demonstrations 191

xiv CONTENTS

Scenario Testing 192
Exploratory Testing 195

Session-Based Testing 200
Automation and Exploratory Testing 201
An Exploratory Tester 201

Usability Testing 202
User Needs and Persona Testing 202
Navigation 204
Check Out the Competition 204

Behind the GUI 204
API Testing 205
Web Services 207

Testing Documents and Documentation 207
User Documentation 207
Reports 208

Tools to Assist with Exploratory Testing 210
Test Setup 211
Test Data Generation 212
Monitoring Tools 212
Simulators 213
Emulators 213

Summary 214

Chapter 11 Critiquing the Product Using Technology-
Facing Tests 217

Introduction to Quadrant 4 217
Who Does It? 220
When Do You Do It? 222
“ility” Testing 223

Security 223
Maintainability 227
Interoperability 228
Compatibility 229
Reliability 230
Installability 231
“ility” Summary 232

Performance, Load, Stress, and Scalability Testing 233
Scalability 233
Performance and Load Testing 234
Performance and Load-Testing Tools 234
Baseline 235

CONTENTS xv

Test Environments 237
Memory Management 237

Summary 238

Chapter 12 Summary of Testing Quadrants 241
Review of the Testing Quadrants 241
A System Test Example 242

The Application 242
The Team and the Process 243

Tests Driving Development 244
Unit Tests 244
Acceptance Tests 245

Automation 245
The Automated Functional Test Structure 245
Web Services 247
Embedded Testing 248

Critiquing the Product with Business-Facing Tests 248
Exploratory Testing 248
Testing Data Feeds 249
The End-to-End Tests 249
User Acceptance Testing 250
Reliability 250

Documentation 251
Documenting the Test Code 251
Reporting the Test Results 251

Using the Agile Testing Quadrants 252
Summary 253

Part IV Automation 255

Chapter 13 Why We Want to Automate Tests and What
Holds Us Back 257

Why Automate? 258
Manual Testing Takes Too Long 258
Manual Processes Are Error Prone 259
Automation Frees People to Do Their Best Work 259
Automated Regression Tests Provide a Safety Net 261
Automated Tests Give Feedback, Early and Often 262
Tests and Examples that Drive Coding Can Do More 262

xvi CONTENTS

Tests Are Great Documentation 263
ROI and Payback 264

Barriers to Automation—Things that Get in the Way 264
Bret’s List 264
Our List 265
Programmers’ Attitude—“Why Automate?” 265
The “Hump of Pain” (The Learning Curve) 266
Initial Investment 267
Code that’s Always in Flux 269
Legacy Code 269
Fear 269
Old Habits 270

Can We Overcome These Barriers? 270
Summary 271

Chapter 14 An Agile Test Automation Strategy 273
An Agile Approach to Test Automation 274

Automation Test Categories 274
Test Automation Pyramid 276

What Can We Automate? 279
Continuous Integration, Builds, and Deploys 280
Unit and Component Tests 282
API or Web Services Testing 282
Testing behind the GUI 282
Testing the GUI 282
Load Tests 283
Comparisons 283
Repetitive Tasks 284
Data Creation or Setup 284

What Shouldn’t We Automate? 285
Usability Testing 285
Exploratory Testing 286
Tests that Will Never Fail 286
One-Off Tests 286

What Might Be Hard to Automate? 287
Developing an Automation Strategy—Where Do We Start? 288

Where Does It Hurt the Most? 289
Multi-Layered Approach 290
Think about Test Design and Maintenance 292
Choosing the Right Tools 294

CONTENTS xvii

Applying Agile Principles to Test Automation 298
Keep It Simple 298
Iterative Feedback 299
Whole-Team Approach 300
Taking the Time to Do It Right 301
Learn by Doing 303
Apply Agile Coding Practices to Tests 303

Supplying Data for Tests 304
Data Generation Tools 304
Avoid Database Access 306
When Database Access Is Unavoidable or Even Desirable 307
Understand Your Needs 310

Evaluating Automation Tools 311
Identifying Requirements for Your Automation Tool 311
One Tool at a Time 312
Choosing Tools 313
Agile-Friendly Tools 316

Implementing Automation 316
Managing Automated Tests 319

Organizing Tests 319
Organizing Test Results 322

Go Get Started 324
Summary 324

Part V An Iteration in the Life of a Tester 327

Chapter 15 Tester Activities in Release or Theme Planning 329
The Purpose of Release Planning 330
Sizing 332

How to Size Stories 332
The Tester’s Role in Sizing Stories 333
An Example of Sizing Stories 334

Prioritizing 338
Why We Prioritize Stories 338
Testing Considerations While Prioritizing 339

What’s in Scope? 340
Deadlines and Timelines 340
Focus on Value 341

xviii CONTENTS

System-Wide Impact 342
Third-Party Involvement 342

Test Planning 345
Where to Start 345
Why Write a Test Plan? 345
Types of Testing 346
Infrastructure 346
Test Environments 347
Test Data 348
Test Results 349

Test Plan Alternatives 350
Lightweight Test Plans 350
Using a Test Matrix 350
Test Spreadsheet 353
A Whiteboard 353
Automated Test List 354

Preparing for Visibility 354
Tracking Test Tasks and Status 354
Communicating Test Results 357
Release Metrics 358

Summary 366

Chapter 16 Hit the Ground Running 369
Be Proactive 369

Benefits 370
Do You Really Need This? 372
Potential Downsides to Advance Preparation 373

Advance Clarity 373
Customers Speak with One Voice 373
Story Size 375
Geographically Dispersed Teams 376

Examples 378
Test Strategies 380
Prioritize Defects 381
Resources 381
Summary 382

Chapter 17 Iteration Kickoff 383
Iteration Planning 383

Learning the Details 384
Considering All Viewpoints 385

CONTENTS xix

Writing Task Cards 389
Deciding on Workload 393

Testable Stories 393
Collaborate with Customers 396
High-Level Tests and Examples 397

Reviewing with Customers 400
Reviewing with Programmers 400
Test Cases as Documentation 402

Summary 403

Chapter 18 Coding and Testing 405
Driving Development 406

Start Simple 406
Add Complexity 407
Assess Risk 407
Coding and Testing Progress Together 409
Identify Variations 410
Power of Three 411
Focus on One Story 411

Tests that Critique the Product 412
Collaborate with Programmers 413

Pair Testing 413
 “Show Me” 413

Talk to Customers 414
Show Customers 414
Understand the Business 415

Completing Testing Tasks 415
Dealing with Bugs 416

Is It a Defect or Is It a Feature? 417
Technical Debt 418
Zero Bug Tolerance 418

It’s All about Choices 419
Decide Which Bugs to Log 420
Choose When to Fix Your Bugs 421
Choose the Media You Should Use to Log a Bug 423
Alternatives and Suggestions for Dealing with Bugs 424
Start Simple 428

Facilitate Communication 429
Testers Facilitate Communication 429
Distributed Teams 431

xx CONTENTS

Regression Tests 432
Keep the Build “Green” 433
Keep the Build Quick 433
Building a Regression Suite 434
Checking the “Big Picture” 434

Resources 434
Iteration Metrics 435

Measuring Progress 435
Defect Metrics 437

Summary 440

Chapter 19 Wrap Up the Iteration 443
Iteration Demo 443
Retrospectives 444

Start, Stop, and Continue 445
Ideas for Improvements 447

Celebrate Successes 449
Summary 451

Chapter 20 Successful Delivery 453
What Makes a Product? 453
Planning Enough Time for Testing 455
The End Game 456

Testing the Release Candidate 458
Test on a Staging Environment 458
Final Nonfunctional Testing 458
Integration with External Applications 459
Data Conversion and Database Updates 459
Installation Testing 461
Communication 462
What If It’s Not Ready? 463

Customer Testing 464
UAT 464
Alpha/Beta Testing 466

Post-Development Testing Cycles 467
Deliverables 468
Releasing the Product 470

Release Acceptance Criteria 470
Release Management 474
Packaging 474

CONTENTS xxi

Customer Expectations 475
Production Support 475
Understand Impact to Business 475

Summary 476

Part VI Summary 479

Chapter 21 Key Success Factors 481
Success Factor 1: Use the Whole-Team Approach 482
Success Factor 2: Adopt an Agile Testing Mind-Set 482
Success Factor 3: Automate Regression Testing 484
Success Factor 4: Provide and Obtain Feedback 484
Success Factor 5: Build a Foundation of Core Practices 486

Continuous Integration 486
Test Environments 487
Manage Technical Debt 487
Working Incrementally 488
Coding and Testing Are Part of One Process 488
Synergy between Practices 489

Success Factor 6: Collaborate with Customers 489
Success Factor 7: Look at the Big Picture 490
Summary 491

Glossary 493

Bibliography 501

Index 509

This page intentionally left blank

xxiii

FOREWORD

By Mike Cohn

“Quality is baked in,” the programmers kept telling me. As part of a proposed
acquisition, my boss had asked me to perform some final due diligence on
the development team and its product. We’d already established that the
company’s recently launched product was doing well in the market, but I was
to make sure we were not about to buy more trouble than benefit. So I spent
my time with the development team. I was looking for problems that might
arise from having rushed the product into release. I wondered, “Was the code
clean? Were there modules that could only be worked on by one developer?
Were there hundreds or thousands of defects waiting to be discovered?” And
when I asked about the team’s approach to testing, “Quality is baked in” was
the answer I got.

Because this rather unusual colloquialism could have meant just about any-
thing, I pressed further. What I found was that this was the company
founder’s shorthand for expressing one of quality pioneer W. Edwards Dem-
ing’s famous fourteen points: Build quality into the product rather than try-
ing to test it in later.

The idea of building quality into their products is at the heart of how agile
teams work. Agile teams work in short iterations in part to ensure that the
application remains at a known state of quality. Agile teams are highly cross-
functional, with programmers, testers, and others working side by side
throughout each iteration so that quality can be baked into products through
techniques such as acceptance-test driven development, a heavy emphasis on
automated testing, and whole-team thinking. Good agile teams bake quality
in by building their products continuously, integrating new work within
minutes of its being completed. Agile teams utilize techniques such as refac-
toring and a preference for simplicity in order to prevent technical debt from
accumulating.

xxiv FOREWORD

Learning how to do these things is difficult, and especially so for testers,
whose role has been given scant attention in previous books. Fortunately, the
book you now hold in your hands answers questions on the mind of every
tester who’s beginning to work on an agile project, such as:

� What are my roles and responsibilities?
� How do I work more closely with programmers?
� How much do we automate, and how do we start automating?

The experience of Lisa and Janet shines through on every page of the book.
However, this book is not just their story. Within this book, they incorporate
dozens of stories from real-world agile testers. These stories form the heart of
the book and are what makes it so unique. It’s one thing to shout from the
ivory tower, “Here’s how to do agile testing.” It’s another to tell the stories of
the teams that have struggled and then emerged agile and victorious over
challenges such as usability testing, legacy code that resists automation, tran-
sitioning testers used to traditional phase-gate development, testing that
“keeps up” with short iterations, and knowing when a feature is “done.”

Lisa and Janet were there at the beginning, learning how to do agile testing
back when the prevailing wisdom was that agile teams didn’t need testers and
that programmers could bake quality in by themselves. Over the years and
through articles, conference presentations, and working with their clients
and teams, Lisa and Janet have helped us see the rich role to be filled by
testers on agile projects. In this book, Lisa and Janet use a test automation
pyramid, the agile testing quadrants of Brian Marick (himself another world-
class agile tester), and other techniques to show how much was missing from
a mind-set that said testing is necessary but testers aren’t.

If you want to learn how to bake quality into your products or are an aspiring
agile tester seeking to understand your role, I can think of no better guides
than Lisa and Janet.

xxv

FOREWORD

By Brian Marick

Imagine yourself skimming over a landscape thousands of years ago, looking
at the people below. They’re barely scraping out a living in a hostile territory,
doing some hunting, some fishing, and a little planting. Off in the distance,
you see the glitter of a glacier. Moving closer, you see that it’s melting fast and
that it’s barely damming a huge lake. As you watch, the lake breaks through,
sweeping down a riverbed, carving it deeper, splashing up against cliffs on
the far side of the landscape—some of which collapse.

As you watch, the dazed inhabitants begin to explore the opening. On the
other side, there’s a lush landscape, teaming with bigger animals than they’ve
ever seen before, some grazing on grass with huge seed heads, some squab-
bling over mounds of fallen fruit.

People move in. Almost immediately, they begin to live better. But as the
years fly past, you see them adapt. They begin to use nets to fish in the fast-
running streams. They learn the teamwork needed to bring down the larger
animals, though not without a few deaths along the way. They find ever-
better ways to cultivate this new grass they’ve come to call “wheat.”

As you watch, the mad burst of innovation gives way to a stable solution, a
good way to live in this new land, a way that’s taught to each new generation.
Although just over there, you spy someone inventing the wheel . . .

� � �

In the early years of this century, the adoption of Agile methods sometimes
seemed like a vast dam breaking, opening up a way to a better—more pro-
ductive, more joyful—way of developing software. Many early adopters saw
benefits right away, even though they barely knew what they were doing.

xxvi FOREWORD

Some had an easier time of it than others. Programmers were like the hunters
in the fable above. Yes, they had to learn new skills in order to hunt bison, but
they knew how to hunt rabbits, more or less, and there were plenty of rabbits
around. Testers were more like spear-fishers in a land where spear-fishing
wouldn’t work. Going from spear-fishing to net-fishing is a much bigger con-
ceptual jump than going from rabbit to bison. And, while some of the skills—
cleaning fish, for example—were the same in the new land, the testers had to
invent new skills of net-weaving before they could truly pull their weight.

So testing lagged behind. Fortunately, we had early adopters like Lisa and
Janet, people who dove right in alongside the programmers, testers who were
not jealous of their role or their independence, downright pleasant people
who could figure out the biggest change of all in Agile testing: the tester’s new
social role.

As a result, we have this book. It’s the stable solution, the good way for testers
to live in this new Agile land of ours. It’s not the final word—we could use the
wheel, and I myself am eager for someone to invent antibiotics—but what’s
taught here will serve you well until someone, perhaps Lisa and Janet, brings
the next big change.

xxvii

PREFACE

We were early adopters of Extreme Programming (XP), testing on XP teams
that weren’t at all sure where testers or their brand of testing fit in. At the time,
there wasn’t much in the agile (which wasn’t called agile yet) literature about
acceptance testing, or how professional testers might contribute. We learned
not only from our own experiences but from others in the small agile com-
munity. In 2002, Lisa co-wrote Testing Extreme Programming with Tip House,
with lots of help from Janet. Since then, agile development has evolved, and
the agile testing community has flourished. With so many people contribut-
ing ideas, we’ve learned a whole lot more about agile testing.

Individually and together, we’ve helped teams transition to agile, helped
testers learn how to contribute on agile teams, and worked with others in the
agile community to explore ways that agile teams can be more successful at
testing. Our experiences differ. Lisa has spent most of her time as an agile
tester on stable teams working for years at a time on web applications in
the retail, telephony, and financial industries. Janet has worked with soft-
ware organizations developing enterprise systems in a variety of industries.
These agile projects have included developing a message-handling system,
an environmental-tracking system, a remote data management system (in-
cluding an embedded application, with a communication network as well as
the application), an oil and gas production accounting application, and ap-
plications in the airline transportation industry. She has played different
roles—sometimes tester, sometimes coach—but has always worked to better
integrate the testers with the rest of the team. She has been with teams from
as little as six months to as long as one-and-a-half years.

With these different points of view, we have learned to work together and
complement each other’s skill sets, and we have given many presentations
and tutorials together.

xxviii PREFACE

WHY WE WROTE THIS BOOK

Several excellent books oriented toward agile development on testing and
test patterns have been published (see our bibliography). These books are
generally focused on helping the developer. We decided to write a book
aimed at helping agile teams be more successful at delivering business value
using tests that the business can understand. We want to help testers and
quality assurance (QA) professionals who have worked in more traditional
development methodologies make the transition to agile development.

We’ve figured out how to apply—on a practical, day-to-day level—the fruits
of our own experience working with teams of all sizes and a variety of ideas
from other agile practitioners. We’ve put all this together in this book to
help testers, quality assurance managers, developers, development manag-
ers, product owners, and anyone else with a stake in effective testing on agile
projects to deliver the software their customers need. However, we’ve fo-
cused on the role of the tester, a role that may be adopted by a variety of
professionals.

Agile testing practices aren’t limited to members of agile teams. They can be
used to improve testing on projects using traditional development method-
ologies as well. This book is also intended to help testers working on projects
using any type of development methodology.

Agile development isn’t the only way to successfully deliver software. How-
ever, all of the successful teams we’ve been on, agile or waterfall, have had
several critical commonalities. The programmers write and automate unit
and integration tests that provide good code coverage. They are disciplined
in the use of source code control and code integration. Skilled testers are in-
volved from the start of the development cycle and are given time and re-
sources to do an adequate job of all necessary forms of testing. An automated
regression suite that covers the system functionality at a higher level is run
and checked regularly. The development team understands the customers’
jobs and their needs, and works closely together with the business experts.

People, not methodologies or tools, make projects successful. We enjoy agile
development because its values, principles, and core practices enable people
to do their best work, and testing and quality are central to agile develop-
ment. In this book, we explain how to apply agile values and principles to
your unique testing situation and enable your teams to succeed. We have
more about that in Chapter 1, “What Is Agile Testing, Anyway?” and in
Chapter 2, “Ten Principles for Agile Testers.”

PREFACE xxix

HOW WE WROTE THIS BOOK

Having experienced the benefits of agile development, we used agile practices
to produce this book. As we began work on the book, we talked to agile
testers and teams from around the globe to find out what problems they en-
countered and how they addressed them. We planned how we would cover
these areas in the book.

We made a release plan based on two-week iterations. Every two weeks, we
delivered two rough-draft chapters to our book website. Because we aren’t
co-located, we found tools to use to communicate, provide “source code con-
trol” for our chapters, deliver the product to our customers, and get their
feedback. We couldn’t “pair” much real-time, but we traded chapters back
and forth for review and revision, and had informal “stand-ups” daily via in-
stant message.

Our “customers” were the generous people in the agile community who volun-
teered to review draft chapters. They provided feedback by email or (if we were
lucky) in person. We used the feedback to guide us as we continued writing
and revising. After all the rough drafts were done, we made a new plan to com-
plete the revisions, incorporating all the helpful ideas from our “customers.”

Our most important tool was mind maps. We started out by creating a mind
map of how we envisioned the whole book. We then created mind maps for
each section of the book. Before writing each chapter, we brainstormed with
a mind map. As we revised, we revisited the mind maps, which helped us
think of ideas we may have missed.

Because we think the mind maps added so much value, we’ve included the
mind map as part of the opening of each chapter. We hope they’ll help you
get an overview of all the information included in the chapter, and inspire
you to try using mind maps yourself.

OUR AUDIENCE

This book will help you if you’ve ever asked any of the following excellent
questions, which we’ve heard many times:

� If developers are writing tests, what do the testers do?
� I’m a QA manager, and our company is implementing agile develop-

ment (Scrum, XP, DSDM, name your flavor). What’s my role now?

xxx PREFACE

� I’ve worked as a tester on a traditional waterfall team, and I’m really
excited by what I’ve read about agile. What do I need to know to work
on an agile team?

� What’s an “agile tester”?
� I’m a developer on an agile team. We’re writing code test-first, but

our customers still aren’t happy with what we deliver. What are we
missing?

� I’m a developer on an agile team. We’re writing our code test-first. We
make sure we have tests for all our code. Why do we need testers?

� I coach an agile development team. Our QA team can’t keep up with
us, and testing always lags behind. Should we just plan to test an
iteration behind development?

� I’m a software development manager. We recently transitioned to
agile, but all our testers quit. Why?

� I’m a tester on a team that’s going agile. I don’t have any program-
ming or automation skills. Is there any place for me on an agile
team?

� How can testing possibly keep up with two-week iterations?
� What about load testing, performance testing, usability testing, all

the other “ilities”? Where do these fit in?
� We have audit requirements. How does agile development and testing

address these?

If you have similar questions and you’re looking for practical advice about
how testers contribute to agile teams and how agile teams can do an effective
job of testing, you’ve picked up the right book.

There are many “flavors” of agile development, but they all have much in
common. We support the Agile Manifesto, which we explain in Chapter 1,
“What Is Agile Testing, Anyway?” Whether you’re practicing Scrum, Extreme
Programming, Crystal, DSDM, or your own variation of agile development,
you’ll find information here to help with your testing efforts.

A User Story for an Agile Testing Book
When Robin Dymond, a managing consultant and trainer who has helped
many teams adopt lean and agile, heard we were writing this book, he sent
us the user story he’d like to have fulfilled. It encapsulates many of the re-
quirements we planned to deliver.

PREFACE xxxi

Acceptance conditions:

• My concerns and fears about losing control of testing are
addressed.

• My concerns and fears about having to write code (never done it)
are addressed.

• As a tester I understand my new value to the team.

• As a tester new to Agile, I can easily read about things that are most
important to my new role.

• As a tester new to Agile, I can easily ignore things that are less im-
portant to my new role.

• As a tester new to Agile, I can easily get further detail about agile
testing that is important to MY context.

Were I to suggest a solution to this problem, I think of Scrum versus XP.
With Scrum you get a simple view that enables people to quickly adopt
Agile. However, Scrum is the tip of the iceberg for successful agile teams.
For testers who are new, I would love to see agile testing ideas ex-
pressed in layers of detail. What do I need to know today, what should I
know tomorrow, and what context-sensitive things should I consider for
continuous improvement?

We’ve tried to provide these layers of detail in this book. We’ll approach agile
testing from a few different perspectives: transitioning into agile develop-
ment, using an agile testing matrix to guide testing efforts, and explaining all
the different testing activities that take place throughout the agile develop-
ment cycle.

Book Story 1

As a QA professional, I can understand the main

difference between traditional QA professionals and agile

team members with a QA background, so that I can begin

internalizing my new responsibilities and deliver value to

the customer sooner and with less difficulty.

xxxii PREFACE

HOW TO USE THIS BOOK

If you aren’t sure where to start in this book, or you just want a quick over-
view, we suggest you read the last chapter, Chapter 22, “Key Success Factors,”
and follow wherever it leads you.

Part I: Introduction

If you want quick answers to questions such as “Is agile testing different than
testing on waterfall projects?” or “What’s the difference between a tester on a
traditional team and an agile tester?,” start with Part I, which includes the
following chapters:

� Chapter 1: What Is Agile Testing, Anyway?
� Chapter 2: Ten Principles for Agile Testers

These chapters are the “tip of the iceberg” that Robin requested in his user
story. They include an overview of how agile differs from a traditional phased
approach and explore the “whole team” approach to quality and testing.

In this part of the book we define the “agile testing mind-set” and what makes
testers successful on agile teams. We explain how testers apply agile values and
principles to contribute their particular expertise.

Part II: Organizational Challenges

If you’re a tester or manager on a traditional QA team, or you’re coaching a
team that’s moving to agile, Part II will help you with the organizational chal-
lenges faced by teams in transition. The “whole team” attitude represents a lot
of cultural changes to team members, but it helps overcome the fear testers
have when they wonder how much control they’ll have or whether they’ll be
expected to write code.

Some of the questions answered in Part II are:

� How can we engage the QA team?
� What about management’s expectations?
� How should we structure our agile team, and where do the testers fit?
� What do we look for when hiring an agile tester?
� How do we cope with a team distributed across the globe?

PREFACE xxxiii

Part II also introduces some topics we don’t always enjoy talking about. We
explore ideas about how to transition processes and models, such as audits or
SOX compliance, that are common in traditional environments.

Metrics and how they’re applied can be a controversial issue, but there are
positive ways to use them to benefit the team. Defect tracking easily becomes
a point of contention for teams, with questions such as “Do we use a defect-
tracking system?” or “When do we log bugs?”

Two common questions about agile testing from people with traditional test
team experience are “What about test plans?” and “Is it true there’s no docu-
mentation on agile projects?” Part II clears up these mysteries.

The chapters in Part II are as follows:

� Chapter 3: Cultural Challenges
� Chapter 4: Team Logistics
� Chapter 5: Transitioning Typical Processes

Part III: The Agile Testing Quadrants

Do you want more details on what types of testing are done on agile projects?
Are you wondering who does what testing? How do you know whether
you’ve done all the testing that’s needed? How do you decide what practices,
techniques, and tools fit your particular situation? If these are your concerns,
check out Part III.

We use Brian Marick’s Agile Testing Quadrants to explain the purpose of
testing. The quadrants help you define all the different areas your testing
should address, from unit level tests to reliability and other “ilities,” and ev-
erything in between. This is where we get down into the nitty-gritty of how
to deliver a high-quality product. We explain techniques that can help you to
communicate well with your customers and better understand their require-
ments. This part of the book shows how tests drive development at multiple
levels. It also provides tools for your toolkit that can help you to effectively
define, design, and execute tests that support the team and critique the prod-
uct. The chapters include the following:

� Chapter 6: The Purpose of Testing
� Chapter 7: Technology-Facing Tests that Support the Team

xxxiv PREFACE

� Chapter 8: Business-Facing Tests that Support the Team
� Chapter 9: Toolkit for Business-Facing Tests that Support the Team
� Chapter 10: Business-Facing Tests that Critique the Product
� Chapter 11: Critiquing the Product Using Technology-Facing Tests
� Chapter 12: Summary of Testing Quadrants

Part IV: Automation

Test automation is a central focus of successful agile teams, and it’s a scary
topic for lots of people (we know, because it’s had us running scared before!).
How do you squeeze test automation into short iterations and still get all the
stories completed?

Part IV gets into the details of when and why to automate, how to overcome
barriers to test automation, and how to develop and implement a test auto-
mation strategy that works for your team. Because test automation tools
change and evolve so rapidly, our aim is not to explain how to use specific
tools, but to help you select and use the right tools for your situation. Our
agile test automation tips will help you with difficult challenges such as test-
ing legacy code.

The chapters are as follows:

� Chapter 13: Why We Want to Automate Tests and What Holds Us Back
� Chapter 14: An Agile Test Automation Strategy

Part V: An Iteration in the Life of a Tester

If you just want to get a feel for what testers do throughout the agile develop-
ment cycle, or you need help putting together all the information in this book,
go to Part V. Here we chronicle an iteration, and more, in the life of an agile
tester. Testers contribute enormous value throughout the agile software devel-
opment cycles. In Part V, we explain the activities that testers do on a daily ba-
sis. We start with planning releases and iterations to get each iteration off to a
good start, and move through the iteration—collaborating with the customer
and development teams, testing, and writing code. We end the iteration by de-
livering new features and finding ways for the team to improve the process.

The chapters break down this way:

� Chapter 15: Tester Activities in Release or Theme Planning
� Chapter 16: Hit the Ground Running

PREFACE xxxv

� Chapter 17: Iteration Kickoff
� Chapter 18: Coding and Testing
� Chapter 19: Wrap Up the Iteration
� Chapter 20: Successful Delivery

Part VI: Summary

In Chapter 21, “Key Success Factors,” we present seven key factors agile teams
can use for successful testing. If you’re having trouble deciding where to start
with agile testing, or how to work on improving what you’re doing now,
these success factors will give you some direction.

Other Elements

We’ve also included a glossary we hope you will find useful, as well as refer-
ences to books, articles, websites, and blogs in the bibliography.

JUST START DOING IT—TODAY!
Agile development is all about doing your best work. Every team has unique
challenges. We’ve tried to present all the information that we think may help
agile testers, their teams, managers, and customers. Apply the techniques that
you think are appropriate for your situation. Experiment constantly, evaluate
the results, and come back to this book to see what might help you improve.
Our goal is to help testers and agile teams enjoy delivering the best and most
valuable product they can.

When we asked Dierk König, founder and project manager of Canoo Web-
Test, what he thought was the number one success factor for agile testing, he
answered: “Start doing it—today!” You can take a baby step to improve your
team’s testing right now. Go get started!

This page intentionally left blank

xxxvii

ACKNOWLEDGMENTS

So many people have helped us with this book that it’s hard to know whom to
thank first. Chris Guzikowski gave us the opportunity to write this book and
kept encouraging us along the way. When we were deciding whether to take
on such a mammoth task, Mike Cohn gave us the sage advice that the best
reason to write a book is that you have something to say. We sure have lots to
say about agile testing. Fortunately, so do lots of other people who were will-
ing to lend us a hand.

Many thanks to Brian Marick and Mike Cohn for writing such kind fore-
words. We’re honored that Mike selected our book for his signature series.
We’re grateful for the many ideas and observations of his that are included in
this book.

Brian Marick’s “Agile Testing Matrix” has guided both of us in our agile projects
for several years, and it provides the core of Part III. Thank you, Brian, for
thinking up the quadrants (and so many other contributions to agile testing)
and letting us use them here.

We made constant use of the agile value of feedback. Many thanks to our of-
ficial reviewers: Jennitta Andrea, Gerard Meszaros, Ron Jeffries, and Paul Du-
vall. Each one had unique and insightful comments that helped us greatly
improve the book. Gerard also helped us be more consistent and correct in
our testing terminology, and contributed some agile testing success stories.

Special thanks to two reviewers and top-notch agile testers who read every
word we wrote and spent hours discussing the draft chapters with us in per-
son: Pierre Veragen and Paul Rogers. Many of the good ideas in this book are
theirs.

xxxviii ACKNOWLEDGMENTS

We interviewed several teams to learn what advice they would give new agile
teams and testers, and solicited success stories and “lessons learned” from
colleagues in the agile testing community. Heartfelt thanks to our many con-
tributors of sidebars and quotes, as well as providers of helpful feedback, in-
cluding (in no particular order) Robin Dymond, Bret Pettichord, Tae Chang,
Bob Galen, Erika Boyer, Grig Gheorghiu, Erik Bos, Mark Benander, Jonathan
Rasmusson, Andy Pols, Dierk König, Rafael Santos, Jason Holzer, Christophe
Louvion, David Reed, John Voris, Chris McMahon, Declan Whelan, Michael
Bolton, Elisabeth Hendrickson, Joe Yakich, Andrew Glover, Alessandro Col-
lino, Coni Tartaglia, Markus Gärtner, Megan Sumrell, Nathan Silberman,
Mike Thomas, Mike Busse, Steve Perkins, Joseph King, Jakub Oleszkiewicz,
Pierre Veragen (again), Paul Rogers (again), Jon Hagar, Antony Marcano,
Patrick Wilson-Welsh, Patrick Fleisch, Apurva Chandra, Ken De Souza, and
Carol Vaage.

Many thanks also to the rest of our community of unofficial reviewers who
read chapters, gave feedback and ideas, and let us bounce ideas off of them,
including Tom Poppendieck, Jun Bueno, Kevin Lawrence, Hannu Kokko,
Titus Brown, Wim van de Goor, Lucas Campos, Kay Johansen, Adrian Howard,
Henrik Kniberg, Shelly Park, Robert Small, Senaka Suriyaachchi, and Erik
Petersen. And if we’ve neglected to list you here, it’s not that we value your
contribution any less, it’s just that we didn’t keep good enough notes! We
hope you will see how your time and effort paid off in the finished book.

We appreciate the groundwork laid by the agile pioneers who have helped us
and our teams succeed with agile. You’ll find some of their works in the bibli-
ography. We are grateful for the agile teams that have given us so many open
source test tools that help all of our teams deliver so much value. Some of
those tools are also listed in the bibliography.

Thanks to Mike Thomas for taking many of the action photos of an agile
team that appear in this book. We hope these photos show those of you new
to agile testing and development that there’s no big mystery—it’s just good
people getting together to discuss, demo, and draw pictures.

Thanks so much to our Addison-Wesley editorial and production team who
patiently answered many questions and turned this into the professional-
looking book you see here, including Raina Chrobak, Chris Zahn, John Fuller,
Sally Gregg, Bonnie Granat, Diane Freed, Jack Lewis, and Kim Arney.

ACKNOWLEDGMENTS xxxix

I’m eternally grateful to Janet for agreeing to write this book with me. She kept us
organized and on track so we could juggle book writing with our full-time jobs
and personal lives. I’m fortunate to have a writing partner whose experience is
complementary to mine. Like any successful agile project, this is a true team effort.
This has been hard work, but thanks to Janet it has been a lot of fun, too.

I’d like to thank the members of my current team at ePlan Services Inc. (formerly
known as Fast401k), which I joined (thanks to Mike Cohn, our first leader) in
2003. All of us learned so much working for Mike that first year, and it’s a testa-
ment to his leadership that we continue to improve and help the business grow.
Thanks to my awesome teammates who have each helped me become a better
tester and agile team member, and who were all good sports while Mike Thomas
took action photos of us: Nanda Lankapalli, Tony Sweets, Jeff Thuss, Lisa Owens,
Mike Thomas, Vince Palumbo, Mike Busse, Nehru Kaja, Trevor Sterritt, Steve Kives,
and former but still beloved team members Joe Yakich, Jason Kay, Jennifer Riefen-
berg, Matt Tierney, and Charles LeRose. I also have been lucky enough to work
with the best customer team anywhere. They are too numerous to mention here,
but many thanks to them, and in particular to Steve Perkins, Anne Olguin, and
Zachary Shannon, who help us focus on delivering value. Thanks also to Mark and
Dan Gutrich, founders and leaders of ePlan Services, for giving us all the opportu-
nity to succeed with agile development.

Thanks to Kay and Zhon Johansen for teaching me about mind maps at Agile
2006. I hope we have put this skill to good use in creating this book.

Much gratitude to all my friends and family, whom I neglected terribly during the
many months spent writing this book, and who nevertheless supported me con-
stantly. There are too many to mention, but I must specially thank Anna Blake for
her constant understanding and provision of donkey therapy. Chester and Ernest,
the donkeys of my heart, have kept pulling me along. Dodger didn’t make the
whole book-writing journey in this world, but his memory continues to lift me up.
My little poodle and muse Tango was by my side every minute that I worked on
this book at home, joined occasionally by Bruno, Bubba, Olive, Squiggy, Starsky,
Bobcat, and Patty. Thanks to my parents for being proud of me and not complain-
ing about my neglect of them during this book-writing time.

I know that my husband, Bob Downing, took a deep breath when I exclaimed, “I
have the chance to write another book about agile testing,” but he nevertheless
encouraged me constantly and made it possible for me to find the time to write.
He kept the “no-kill shelter” running, kept our lives rolling, kept my spirits up, and
sustained me with many fabulous meals. He is the light of my life.

—Lisa

Lisa’s Story

Part I

INTRODUCTION

In the first two chapters, we provide an overview of agile testing, highlighting
how agile testing differs from testing in a traditional phased or “waterfall”
approach. We explore the “whole team” approach to quality and testing.

This page intentionally left blank

3

Chapter 1

WHAT IS AGILE
TESTING, ANYWAY?

Like a lot of terminology, “agile development” and “agile testing” mean different
things to different people. In this chapter, we explain our view of agile, which
reflects the Agile Manifesto and general principles and values shared by different
agile methods. We want to share a common language with you, the reader, so
we’ll go over some of our vocabulary. We compare and contrast agile develop-
ment and testing with the more traditional phased approach. The “whole team”
approach promoted by agile development is central to our attitude toward qual-
ity and testing, so we also talk about that here.

AGILE VALUES

“Agile” is a buzzword that will probably fall out of use someday and make
this book seem obsolete. It’s loaded with different meanings that apply in dif-
ferent circumstances. One way to define “agile development” is to look at the
Agile Manifesto (see Figure 1-1).

Using the values from the Manifesto to guide us, we strive to deliver small
chunks of business value in extremely short release cycles.

Whole-Team
Approach

Agile Values

Working on Traditional Teams

Working on Agile Teams

Traditional vs. Agile teams

How Is Agile
Testing Different

A Little Context for
Roles and Activities

Customer Team

Interaction

Developer Team

What We Mean
by “Agile Testing”What Is Agile

Testing, Anyway?

4 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

We use the word “agile” in this book in a broad sense. Whether your team is
practicing a particular agile method, such as Scrum, XP, Crystal, DSDM, or
FDD, to name a few, or just adopting whatever principles and practices make
sense for your situation, you should be able to apply the ideas in this book. If
you’re delivering value to the business in a timely manner with high-quality
software, and your team continually strives to improve, you’ll find useful in-
formation here. At the same time, there are particular agile practices we feel
are crucial to any team’s success. We’ll talk about these throughout the book.

WHAT DO WE MEAN BY “AGILE TESTING”?
You might have noticed that we use the term “tester” to describe a person
whose main activities revolve around testing and quality assurance. You’ll
also see that we often use the word “programmer” to describe a person whose
main activities revolve around writing production code. We don’t intend that
these terms sound narrow or insignificant. Programmers do more than turn
a specification into a program. We don’t call them “developers,” because ev-

Chapter 21, “Key
Success Factors,”
lists key success
factors for agile
testing.

Manifesto for Agile
Software Development

We are uncovering better ways
of developing software by doing

it and helping others do it.
Through this work we have

come to value:

Individuals and interactions over
processes and tools

Working software over
comprehensive documentation
Customer collaboration over

contract negotiation
Responding to change over

following a plan

That is, while there is value
in the items on the right,

we value the items on the left more.

Figure 1-1 Agile Manifesto

WHAT DO WE MEAN BY “AGILE TESTING”? 5

eryone involved in delivering software is a developer. Testers do more than
perform “testing tasks.” Each agile team member is focused on delivering a
high-quality product that provides business value. Agile testers work to en-
sure that their team delivers the quality their customers need. We use the
terms “programmer” and “tester” for convenience.

Several core practices used by agile teams relate to testing. Agile program-
mers use test-driven development (TDD), also called test-driven design, to
write quality production code. With TDD, the programmer writes a test for a
tiny bit of functionality, sees it fail, writes the code that makes it pass, and
then moves on to the next tiny bit of functionality. Programmers also write
code integration tests to make sure the small units of code work together as
intended. This essential practice has been adopted by many teams, even those
that don’t call themselves “agile,” because it’s just a smart way to think
through your software design and prevent defects. Figure 1-2 shows a sample
unit test result that a programmer might see.

This book isn’t about unit-level or component-level testing, but these types
of tests are critical to a successful project. Brian Marick [2003] describes
these types of tests as “supporting the team,” helping the programmers know
what code to write next. Brian also coined the term “technology-facing tests,”
tests that fall into the programmer’s domain and are described using pro-
grammer terms and jargon. In Part II, we introduce the Agile Testing Quad-
rants and examine the different categories of agile testing. If you want to
learn more about writing unit and component tests, and TDD, the bibliogra-
phy will steer you to some good resources.

Figure 1-2 Sample unit test output

6 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

If you want to know how agile values, principles, and practices applied to test-
ing can help you, as a tester, do your best work, and help your team deliver
more business value, please keep reading. If you’ve bothered to pick up this
book, you’re probably the kind of professional who continually strives to grow
and learn. You’re likely to have the mind-set that a good agile team needs to
succeed. This book will show you ways to improve your organization’s prod-
uct, provide the most value possible to your team, and enjoy your job.

During a break from working on this chapter, I talked to a friend who works in
quality assurance for a large company. It was a busy time of year, and management
expected everyone to work extra hours. He said, “If I thought working 100 extra
hours would solve our problems, I’d work ‘til 7 every night until that was done. But
the truth was, it might take 4,000 extra hours to solve our problems, so working
extra feels pointless.” Does this sound familiar?

—Lisa

If you’ve worked in the software industry long, you’ve probably had the op-
portunity to feel like Lisa’s friend. Working harder and longer doesn’t help
when your task is impossible to achieve. Agile development acknowledges
the reality that we only have so many good productive hours in a day or
week, and that we can’t plan away the inevitability of change.

Agile development encourages us to solve our problems as a team. Business
people, programmers, testers, analysts—everyone involved in software devel-
opment—decides together how best to improve their product. Best of all, as
testers, we’re working together with a team of people who all feel responsible
for delivering the best possible quality, and who are all focused on testing. We
love doing this work, and you will too.

When we say “agile testing” in this book, we’re usually talking about business-
facing tests, tests that define the business experts’ desired features and func-
tionality. We consider “customer-facing” a synonym for “business-facing.”
“Testing” in this book also includes tests that critique the product and focus
on discovering what might be lacking in the finished product so that we can
improve it. It includes just about everything beyond unit and component
level testing: functional, system, load, performance, security, stress, usability,
exploratory, end-to-end, and user acceptance. All these types of tests might
be appropriate to any given project, whether it’s an agile project or one using
more traditional methodologies.

Lisa’s Story

A LITTLE CONTEXT FOR ROLES AND ACTIVITIES ON AN AGILE TEAM 7

Agile testing doesn’t just mean testing on an agile project. Some testing ap-
proaches, such as exploratory testing, are inherently agile, whether it’s done
an agile project or not. Testing an application with a plan to learn about it as
you go, and letting that information guide your testing, is in line with valuing
working software and responding to change. Later chapters discuss agile
forms of testing as well as “agile testing” practices.

A LITTLE CONTEXT FOR ROLES AND ACTIVITIES
ON AN AGILE TEAM

We’ll talk a lot in this book about the “customer team” and the “developer
team.” The difference between them is the skills they bring to delivering a
product.

Customer Team

The customer team includes business experts, product owners, domain ex-
perts, product managers, business analysts, subject matter experts—every-
one on the “business” side of a project. The customer team writes the stories
or feature sets that the developer team delivers. They provide the examples
that will drive coding in the form of business-facing tests. They communi-
cate and collaborate with the developer team throughout each iteration, an-
swering questions, drawing examples on the whiteboard, and reviewing
finished stories or parts of stories.

Testers are integral members of the customer team, helping elicit require-
ments and examples and helping the customers express their requirements as
tests.

Developer Team

Everyone involved with delivering code is a developer, and is part of the de-
veloper team. Agile principles encourage team members to take on multiple
activities; any team member can take on any type of task. Many agile practi-
tioners discourage specialized roles on teams and encourage all team mem-
bers to transfer their skills to others as much as possible. Nevertheless, each
team needs to decide what expertise their projects require. Programmers,
system administrators, architects, database administrators, technical writers,
security specialists, and people who wear more than one of these hats might
be part of the team, physically or virtually.

8 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

Testers are also on the developer team, because testing is a central compo-
nent of agile software development. Testers advocate for quality on behalf of
the customer and assist the development team in delivering the maximum
business value.

Interaction between Customer and Developer Teams

The customer and developer teams work closely together at all times. Ideally,
they’re just one team with a common goal. That goal is to deliver value to the
organization. Agile projects progress in iterations, which are small develop-
ment cycles that typically last from one to four weeks. The customer team,
with input from the developers, will prioritize stories to be developed, and
the developer team will determine how much work they can take on. They’ll
work together to define requirements with tests and examples, and write the
code that makes the tests pass. Testers have a foot in each world, understand-
ing the customer viewpoint as well as the complexities of the technical imple-
mentation (see Figure 1-3).

Some agile teams don’t have any members who define themselves as “testers.”
However, they all need someone to help the customer team write business-
facing tests for the iteration’s stories, make sure the tests pass, and make sure
that adequate regression tests are automated. Even if a team does have testers,
the entire agile team is responsible for these testing tasks. Our experience
with agile teams has shown that testing skills and experience are vital to
project success and that testers do add value to agile teams.

Domain
Expert

Tester

Programmer

Interaction of Roles

Figure 1-3 Interaction of roles

HOW IS AGILE TESTING DIFFERENT? 9

HOW IS AGILE TESTING DIFFERENT?
We both started working on agile teams at the turn of the millennium. Like a
lot of testers who are new to agile, we didn’t know what to expect at first. To-
gether with our respective agile teams, we’ve worked on we’ve learned a lot
about testing on agile projects. We’ve also implemented ideas and practices
suggested by other agile testers and teams. Over the years, we’ve shared our
experiences with other agile testers as well. We’ve facilitated workshops and
led tutorials at agile and testing conferences, talked with local user groups,
and joined countless discussions on agile testing mailing lists. Through these
experiences, we’ve identified differences between testing on agile teams and
testing on traditional waterfall development projects. Agile development has
transformed the testing profession in many ways.

Working on Traditional Teams

Neither working closely with programmers nor getting involved with a
project from the earliest phases was new to us. However, we were used to
strictly enforced gated phases of a narrowly defined software development
life cycle, starting with release planning and requirements definition and
usually ending with a rushed testing phase and a delayed release. In fact, we
often were thrust into a gatekeeper role, telling business managers, “Sorry,
the requirements are frozen; we can add that feature in the next release.”

As leaders of quality assurance teams, we were also often expected to act as
gatekeepers of quality. We couldn’t control how the code was written, or even
if any programmers tested their code, other than by our personal efforts at
collaboration. Our post-development testing phases were expected to boost
quality after code was complete. We had the illusion of control. We usually
had the keys to production, and sometimes we had the power to postpone
releases or stop them from going forward. Lisa even had the title of “Quality
Boss,” when in fact she was merely the manager of the QA team.

Our development cycles were generally long. Projects at a company that pro-
duced database software might last for a year. The six-month release cycles
Lisa experienced at an Internet start-up seemed short at the time, although it
was still a long time to have frozen requirements. In spite of much process
and discipline, diligently completing one phase before moving on to the
next, it was plenty of time for the competition to come out ahead, and the
applications were not always what the customers expected.

10 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

Traditional teams are focused on making sure all the specified requirements
are delivered in the final product. If everything isn’t ready by the original tar-
get release date, the release is usually postponed. The development teams
don’t usually have input about what features are in the release, or how they
should work. Individual programmers tend to specialize in a particular area
of the code. Testers study the requirements documents to write their test
plans, and then they wait for work to be delivered to them for testing.

Working on Agile Teams

Transitioning to the short iterations of an agile project might produce initial
shock and awe. How can we possibly define requirements and then test and
deliver production-ready code in one, two, three, or four weeks? This is par-
ticularly tough for larger organizations with separate teams for different func-
tions and even harder for teams that are geographically dispersed. Where do
all these various programmers, testers, analysts, project managers, and count-
less specialties fit in a new agile project? How can we possibly code and test so
quickly? Where would we find time for difficult efforts such as automating
tests? What control do we have over bad code getting delivered to production?

We’ll share our stories from our first agile experiences to show you that ev-
eryone has to start somewhere.

My first agile team embraced Extreme Programming (XP), not without some “learn-
ing experiences.” Serving as the only professional tester on a team of eight pro-
grammers who hadn’t learned how to automate unit tests was disheartening. The
first two-week iteration felt like jumping off a cliff.

Fortunately, we had a good coach, excellent training, a supportive community of
agile practitioners with ideas to share, and time to learn. Together we figured out
some ins and outs of how to integrate testing into an agile project—indeed, how
to drive the project with tests. I learned how I could use my testing skills and
experience to add real value to an agile team.

The toughest thing for me (the former Quality Boss) to learn was that the custom-
ers, not I, decided on quality criteria for the product. I was horrified after the first
iteration to find that the code crashed easily when two users logged in concur-
rently. My coach patiently explained, over my strident objections, that our cus-
tomer, a start-up company, wanted to be able to show features to potential
customers. Reliability and robustness were not yet the issue.

I learned that my job was to help the customers tell us what was valuable to them
during each iteration, and to write tests to ensure that’s what they got.

—Lisa

Lisa’s Story

HOW IS AGILE TESTING DIFFERENT? 11

My first foray into the agile world was also an Extreme Programming (XP) engage-
ment. I had just come from an organization that practiced waterfall with some
extremely bad practices, including giving the test team a day or so to test six
months of code. In my next job as QA manager, the development manager and I
were both learning what XP really meant. We successfully created a team that
worked well together and managed to automate most of the tests for the func-
tionality. When the organization downsized during the dot-com bust, I found
myself in a new position at another organization as the lone tester with about
ten developers on an XP project.

On my first day of the project, Jonathan Rasmusson, one of the developers, came
up to me and asked me why I was there. The team was practicing XP, and the pro-
grammers were practicing test-first and automating all their own tests. Participating
in that was a challenge I couldn’t resist. The team didn’t know what value I could
add, but I knew I had unique abilities that could help the team. That experience
changed my life forever, because I gained an understanding of the nuances of an
agile project and determined then that my life’s work was to make the tester role
a more fulfilling one.

—Janet

Read Jonathan’s Story
Jonathan Rasmusson, now an Agile Coach at Rasmusson Software Consulting,
but Janet’s coworker on her second agile team, explains how he learned
how agile testers add value.

So there I was, a young hotshot J2EE developer excited and pumped to
be developing software the way it should be developed—using XP. Until
one day, in walks a new team member—a tester. It seems management
thought it would be good to have a QA resource on the team.

That’s fine. Then it occurred to me that this poor tester would have noth-
ing to do. I mean, as a developer on an XP project, I was writing the
tests. There was no role for QA here as far as I could see.

So of course I went up and introduced myself and asked quite pointedly
what she was going to do on the project, because the developers were
writing all the tests. While I can’t remember exactly how Janet
responded, the next six months made it very clear what testers can do
on agile projects.

With the automation of the tedious, low-level boundary condition test
cases, Janet as a tester was now free to focus on much greater value-
add areas like exploratory testing, usability, and testing the app in ways
developers hadn’t originally anticipated. She worked with the

Janet’s Story

12 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

Agile teams work closely with the business and have a detailed understanding
of the requirements. They’re focused on the value they can deliver, and they
might have a great deal of input into prioritizing features. Testers don’t sit
and wait for work; they get up and look for ways to contribute throughout
the development cycle and beyond.

If testing on an agile project felt just like testing on a traditional project, we
wouldn’t feel the need to write a book. Let’s compare and contrast these test-
ing methods.

Traditional vs. Agile Testing

It helps to start by looking at similarities between agile testing and testing in
traditional software development. Consider Figure 1-4.

In the phased approach diagram, it is clear that testing happens at the end,
right before release. The diagram is idealistic, because it gives the impression
there is as much time for testing as there is for coding. In many projects, this
is not the case. The testing gets “squished” because coding takes longer than
expected, and because teams get into a code-and-fix cycle at the end.

Agile is iterative and incremental. This means that the testers test each incre-
ment of coding as soon as it is finished. An iteration might be as short as one
week, or as long as a month. The team builds and tests a little bit of code,
making sure it works correctly, and then moves on to next piece that needs to
be built. Programmers never get ahead of the testers, because a story is not
“done” until it has been tested. We’ll talk much more about this throughout
the book.

There’s tremendous variety in the approaches to projects that agile teams take.
One team might be dedicated to a single project or might be part of another

customer to help write test cases that defined success for upcoming sto-
ries. She paired with developers looking for gaps in tests.

But perhaps most importantly, she helped reinforce an ethos of quality
and culture, dispensing happy-face stickers to those developers who
had done an exceptional job (these became much sought-after badges
of honor displayed prominently on laptops).

Working with Janet taught me a great deal about the role testers play on
agile projects, and their importance to the team.

HOW IS AGILE TESTING DIFFERENT? 13

bigger project. No matter how big your project is, you still have to start some-
where. Your team might take on an epic or feature, a set of related stories at an
estimating meeting, or you might meet to plan the release. Regardless of how
a project or subset of a project gets started, you’ll need to get a high-level un-
derstanding of it. You might come up with a plan or strategy for testing as you
prepare for a release, but it will probably look quite different from any test
plan you’ve done before.

Every project, every team, and sometimes every iteration is different. How
your team solves problems should depend on the problem, the people, and
the tools you have available. As an agile team member, you will need to be
adaptive to the team’s needs.

Rather than creating tests from a requirements document that was created by
business analysts before anyone ever thought of writing a line of code, some-
one will need to write tests that illustrate the requirements for each story days
or hours before coding begins. This is often a collaborative effort between a

Phased or gated—for example, Waterfall

Requirements

Specifications

Code

Testing

Release

E

A

C

D

B

F

A

C

D

BA

C

BA B

Time

It 0 It 1 It 2 It 3 It 4

Agile:
Iterative & incremental

• Each story is expanded, coded, and tested
• Possible release after each iteration

Figure 1-4 Traditional testing vs. agile testing

14 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

business or domain expert and a tester, analyst, or some other development
team member. Detailed functional test cases, ideally based on examples pro-
vided by business experts, flesh out the requirements. Testers will conduct
manual exploratory testing to find important bugs that defined test cases
might miss. Testers might pair with other developers to automate and exe-
cute test cases as coding on each story proceeds. Automated functional tests
are added to the regression test suite. When tests demonstrating minimum
functionality are complete, the team can consider the story finished.

If you attended agile conferences and seminars in the early part of this de-
cade, you heard a lot about TDD and acceptance testing but not so much
about other critical types of testing, such as load, performance, security, us-
ability, and other “ility” testing. As testers, we thought that was a little weird,
because all these types of testing are just as vital on agile projects as they are
on projects using any other development methodology. The real difference is
that we like to do these tests as early in the development process as we can so
that they can also drive design and coding.

If the team actually releases each iteration, as Lisa’s team does, the last day or
two of each iteration is the “end game,” the time when user acceptance test-
ing, training, bug fixing, and deployments to staging environments can oc-
cur. Other teams, such as Janet’s, release every few iterations, and might even
have an entire iteration’s worth of “end game” activities to verify release
readiness. The difference here is that all the testing is not left until the end.

As a tester on an agile team, you’re a key player in releasing code to produc-
tion, just as you might have been in a more traditional environment. You
might run scripts or do manual testing to verify all elements of a release, such
as database update scripts, are in place. All team members participate in ret-
rospectives or other process improvement activities that might occur for ev-
ery iteration or every release. The whole team brainstorms ways to solve
problems and improve processes and practices.

Agile projects have a variety of flavors. Is your team starting with a clean
slate, in a greenfield (new) development project? If so, you might have fewer
challenges than a team faced with rewriting or building on a legacy system
that has no automated regression suite. Working with a third party brings
additional testing challenges to any team.

Whatever flavor of development you’re using, pretty much the same ele-
ments of a software development life cycle need to happen. The difference

WHOLE-TEAM APPROACH 15

with agile is that time frames are greatly shortened, and activities happen
concurrently. Participants, tests, and tools need to be adaptive.

The most critical difference for testers in an agile project is the quick feed-
back from testing. It drives the project forward, and there are no gatekeepers
ready to block project progress if certain milestones aren’t met.

We’ve encountered testers who resist the transition to agile development,
fearing that “agile development” equates with chaos, lack of discipline, lack
of documentation, and an environment that is hostile to testers. While some
teams do seem to use the “agile” buzzword to justify simply doing whatever
they want, true agile teams are all about repeatable quality as well as effi-
ciency. In our experience, an agile team is a wonderful place to be a tester.

WHOLE-TEAM APPROACH

One of the biggest differences in agile development versus traditional devel-
opment is the agile “whole-team” approach. With agile, it’s not only the testers
or a quality assurance team who feel responsible for quality. We don’t think
of “departments,” we just think of the skills and resources we need to deliver
the best possible product. The focus of agile development is producing high-
quality software in a time frame that maximizes its value to the business. This
is the job of the whole team, not just testers or designated quality assurance
professionals. Everyone on an agile team gets “test-infected.” Tests, from the
unit level on up, drive the coding, help the team learn how the application
should work, and let us know when we’re “done” with a task or story.

An agile team must possess all the skills needed to produce quality code that
delivers the features required by the organization. While this might mean in-
cluding specialists on the team, such as expert testers, it doesn’t limit particu-
lar tasks to particular team members. Any task might be completed by any
team member, or a pair of team members. This means that the team takes re-
sponsibility for all kinds of testing tasks, such as automating tests and man-
ual exploratory testing. It also means that the whole team thinks constantly
about designing code for testability.

The whole-team approach involves constant collaboration. Testers collabo-
rate with programmers, the customer team, and other team specialists—and
not just for testing tasks, but other tasks related to testing, such as building
infrastructure and designing for testability. Figure 1-5 shows a developer re-
viewing reports with two customers and a tester (not pictured).

16 CHAPTER 1 � WHAT IS AGILE TESTING, ANYWAY?

The whole-team approach means everyone takes responsibility for testing
tasks. It means team members have a range of skill sets and experience to em-
ploy in attacking challenges such as designing for testability by turning ex-
amples into tests and into code to make those tests pass. These diverse
viewpoints can only mean better tests and test coverage.

Most importantly, on an agile team, anyone can ask for and receive help. The
team commits to providing the highest possible business value as a team, and
the team does whatever is needed to deliver it. Some folks who are new to ag-
ile perceive it as all about speed. The fact is, it’s all about quality—and if it’s
not, we question whether it’s really an “agile” team.

Your situation is unique. That’s why you need to be aware of the potential
testing obstacles your team might face and how you can apply agile values
and principles to overcome them.

Figure 1-5 A developer discusses an issue with customers

SUMMARY 17

SUMMARY

Understanding the activities that testers perform on agile teams helps you
show your own team the value that testers can add. Learning the core prac-
tices of agile testing will help your team deliver software that delights your
customers.

In this chapter, we’ve explained what we mean when we use the term “agile
testing.

� We showed how the Agile Manifesto relates to testing, with its empha-
sis on individuals and interactions, working software, customer col-
laboration, and responding to change.

� We provided some context for this book, including some other terms
we use such as “tester,” “programmer,” “customer,” and related terms
so that we can speak a common language.

� We explained how agile testing, with its focus on business value and
delivering the quality customers require, is different from traditional
testing, which focuses on conformance to requirements.

� We introduced the “whole-team” approach to agile testing, which
means that everyone involved with delivering software is responsible
for delivering high-quality software.

� We advised taking a practical approach by applying agile values and
principles to overcome agile testing obstacles that arise in your
unique situation.

This page intentionally left blank

19

Chapter 2

TEN PRINCIPLES
FOR AGILE TESTERS

Everyone on an agile team is a tester. Anyone can pick up testing tasks. If that’s
true, then what is special about an agile tester? If I define myself as a tester on an
agile team, what does that really mean? Do agile testers need different skill sets
than testers on traditional teams? What guides them in their daily activities?

In this chapter, we talk about the agile testing mind-set, show how agile val-
ues and principles guide testing, and give an overview of how testers add value
on agile teams.

WHAT’S AN AGILE TESTER?
We define an agile tester this way: a professional tester who embraces change,
collaborates well with both technical and business people, and understands
the concept of using tests to document requirements and drive development.
Agile testers tend to have good technical skills, know how to collaborate with

Ten Principles
for

Agile Testers

Adding Value

Applying Agile
Principles and Values

The Agile
Tesing Mind-Set

What Is an
Agile Tester?

Provide Continuous Feedback

Deliver Value to the Customer

Enable Face-to-Face Communication

Have Courage

Keep It Simple

Practice Continuous Improvement

Respond to Change

Self-Organize

Focus on People

Enjoy

20 CHAPTER 2 � TEN PRINCIPLES FOR AGILE TESTERS

others to automate tests, and are also experienced exploratory testers.
They’re willing to learn what customers do so that they can better under-
stand the customers’ software requirements.

Who’s an agile tester? She’s a team member who drives agile testing. We know
many agile testers who started out in some other specialization. A developer
becomes test-infected and branches out beyond unit testing. An exploratory
tester, accustomed to working in an agile manner, is attracted to the idea of
an agile team. Professionals in other roles, such as business or functional an-
alysts, might share the same traits and do much of the same work.

Skills are important, but attitude counts more. Janet likes to say, “Without
the attitude, the skill is nothing.” Having had to hire numerous testers for our
agile teams, we've put a lot of thought into this and discussed it with others
in the agile community. Testers tend to see the big picture. They look at the
application more from a user or customer point of view, which means they’re
generally customer-focused.

THE AGILE TESTING MIND-SET

What makes a team “agile”? To us, an agile team is one that continually fo-
cuses on doing its best work and delivering the best possible product. In our
experience, this involves a ton of discipline, learning, time, experimentation,
and working together. It’s not for everyone, but it’s ideal for those of us who
like the team dynamic and focus on continual improvement.

Successful projects are a result of good people allowed to do good work. The
characteristics that make someone succeed as a tester on an agile team are
probably the same characteristics that make a highly valued tester on any
team.

An agile tester doesn’t see herself as a quality police officer, protecting her cus-
tomers from inadequate code. She’s ready to gather and share information, to
work with the customer or product owner in order to help them express their
requirements adequately so that they can get the features they need, and to
provide feedback on project progress to everyone.

Agile testers, and maybe any tester with the right skills and mind-set, are
continually looking for ways the team can do a better job of producing high-
quality software. On a personal level, that might mean attending local user
group meetings or roundtables to find out what other teams are doing. It

APPLYING AGILE PRINCIPLES AND VALUES 21

also means trying out new tools to help the team do a better job of specify-
ing, executing, and automating customer requirements as tests.

The bottom line is that agile testers, like their agile teammates, enjoy learning
new skills and taking on new challenges, and they don’t limit themselves to
solving only testing issues. This isn’t just a trait of testers; we see it in all agile
team members. Agile testers help the developer and customer teams address
any kind of issue that might arise. Testers can provide information that helps
the team look back and learn what’s working and what isn’t.

Creativity, openness to ideas, willingness to take on any task or role, focus on
the customer, and a constant view of the big picture are just some components
of the agile testing mind-set. Good testers have an instinct and understanding
for where and how software might fail, and how to track down failures.

Testers might have special expertise and experience in testing, but a good ag-
ile tester isn’t afraid to jump into a design discussion with suggestions that
will help testability or create a more elegant solution. An agile testing mind-
set is one that is results-oriented, craftsman-like, collaborative, eager to
learn, and passionate about delivering business value in a timely manner.

APPLYING AGILE PRINCIPLES AND VALUES

Individuals can have a big impact on a project’s success. We’d expect a team
with more experienced and higher-skilled members to outperform a less tal-
ented team. But a team is more than just its individual members. Agile values
and principles promote a focus on the people involved in a project and how
they interact and communicate. A team that guides itself with agile values
and principles will have higher team morale and better velocity than a poorly
functioning team of talented individuals.

The four value statements in the Agile Manifesto, which we presented at the
start of the first chapter, show preferences, not ultimatums, and make no
statements about what to do or not to do. The Agile Manifesto also includes a
list of principles that define how we approach software development. Our list
of agile “testing” principles is partially derived from those principles. Because
we both come from the Extreme Programming culture, we’ve adopted many
of its values and underlying principles. We’ve also incorporated guidelines
and principles that have worked for our teams. Your team’s own values and
principles will guide you as you choose practices and make decisions about
how you want to work.

22 CHAPTER 2 � TEN PRINCIPLES FOR AGILE TESTERS

The principles we think are important for an agile tester are:

� Provide continuous feedback.
� Deliver value to the customer.
� Enable face-to-face communication.
� Have courage.
� Keep it simple.
� Practice continuous improvement.
� Respond to change.
� Self-organize.
� Focus on people.
� Enjoy.

Provide Continuous Feedback

Given that tests drive agile projects, it’s no surprise that feedback plays a big
part in any agile team. The tester’s traditional role of “information provider”
makes her inherently valuable to an agile team. One of the agile tester’s most
important contributions is helping the product owner or customer articulate
requirements for each story in the form of examples and tests. The tester
then works together with teammates to turn those requirements into execut-
able tests. Testers, programmers, and other team members work to run these
tests early and often so they’re continually guided by meaningful feedback.
We’ll spend a lot of time in this book explaining ways to do this.

When the team encounters obstacles, feedback is one way to help remove
them. Did we deliver a user interface that didn’t quite meet customer expec-
tations? Let’s write a task card reminding us to collaborate with the customer
on paper prototypes of the next UI story.

Is management worried about how work is progressing? Display a big visible
chart of tests written, run, and passing every day. Display big-picture func-
tionality coverage such as test matrices. Having trouble getting the build sta-
ble? Lisa’s team displayed the number of days remaining until time to tag the
build for release in order to keep everyone focused on finishing stories in
time. After that became a habit, they didn’t need the visual cue anymore.

Deliver Value to the Customer

Agile development is about delivering value in small releases that provide ex-
actly the functionality that the customer has most recently prioritized. This
usually means limiting scope. It’s easy to get caught up in the customer

APPLYING AGILE PRINCIPLES AND VALUES 23

team’s desire for cool features. Anyone can question these additions, but a
tester often recognizes the impact to the story, because they need to think
about the testing repercussions.

Our product owner participates in planning meetings before each iteration. Never-
theless, after the iteration has started and we discuss more details about the sto-
ries and how to test them, he often brings up an idea that didn’t come out during
the planning, such as, “Well, it would really be nice if the selection on this report
could include X, Y, and Z and be sorted on A as well.” An innocent request can
add a lot of complexity to a story. I often bring in one of the programmers to talk
about whether this addition can be handled within the scope of the story we had
planned. If not, we ask the product owner to write a card for the next iteration.

—Lisa

Agile testers stay focused on the big picture. We can deliver the most critical
functionality in this iteration and add to it later. If we let new features creep
in, we risk delivering nothing on time. If we get too caught up with edge
cases and miss core functionality on the happy path, we won’t provide the
value the business needs.

To ensure that we deliver some value in each iteration, our team looks at each
story to identify the “critical path” or “thin slice” of necessary functionality. We
complete those tasks first and then go back and flesh out the rest of the features.
The worst-case scenario is that only the core functionality gets released. That’s
better than delivering nothing or something that works only halfway.

—Lisa

Agile testers take the same approach as that identified in Lisa’s story. While
one of our skills is to identify test cases beyond the “happy path,” we still need
to start by making sure the happy path works. We can automate tests for the
happy path, and add negative and boundary tests later. Always consider what
adds the most value to the customer, and understand your context. If an ap-
plication is safety-critical, adding negative tests is absolutely required. The
testing time needs to be considered during the estimation process to make
sure that enough time is allotted in the iteration to deliver a “safe” feature.

Enable Face-to-Face Communication

No team works well without good communication. Today, when so many
teams are distributed in multiple geographical locations, communication is

Lisa’s Story

Lisa’s Story

24 CHAPTER 2 � TEN PRINCIPLES FOR AGILE TESTERS

even more vital and more of a challenge. The agile tester should look for
unique ways to facilitate communication. It is a critical aspect to doing her
job well.

When I was working with one team, we had a real problem with programmers
talking with the product owner and leaving the testers out of the discussion. They
often found out about changes after the fact. Part of the problem was that the
developers were not sitting with the testers due to logistical problems. Another
problem was history. The test team was new, and the product owner was used to
going straight to the programmers.

I took the problem to the team, and we created a rule. We found great success
with the “Power of Three.” This meant that all discussions about a feature needed
a programmer, a tester, and the product owner. It was each person’s responsibility
to make sure there was always a representative from each group. If someone saw
two people talking, they had the right to butt into the conversation. It didn’t take
very long before it was just routine and no one would consider leaving the tester
out of a discussion. This worked for us because the team bought into the solution.

—Janet

Any time there is a question about how a feature should work or what an inter-
face should look like, the tester can pull in a programmer and a business expert
to talk about it. Testers should never get in the way of any direct customer-
developer communication, but they can often help to make sure that com-
munication happens.

Agile testers see each story or theme from the customer’s point of view but
also understand technical aspects and limitations related to implementing
features. They can help customers and developers achieve a common lan-
guage. Business people and software people often speak different languages.
They have to find some common ground in order to work together success-
fully. Testers can help them develop a shared language, a project dialect, or
team jargon.

Brian Marick (2004) recommends that we use examples to develop this lan-
guage. When Lisa’s team digresses into a philosophical discussion during a
sprint planning meeting, Lisa asks the product owner for an example or us-
age scenario. Testers can encourage whiteboard discussions to work through
more examples. These help the customers envision their requirements more
clearly. They also help the developers to produce well-designed code to meet
those requirements.

Janet’s Story

APPLYING AGILE PRINCIPLES AND VALUES 25

Face-to-face communication has no substitute. Agile development depends
on constant collaboration. Like other agile team members, the people doing
testing tasks will continually seek out customer and technical team members
to discuss and collaborate. When an agile tester suspects a hidden assump-
tion or a misunderstood requirement, she’ll get a customer and a developer
talking about it. If people in a different building or continent need to talk,
they look for creative ways to replace face-to-face, real-time conversations.

Have Courage

Courage is a core value in XP, and practices such as test automation and con-
tinuous integration allow the team to practice this value. The developers
have the courage to make changes and refactor the code because they have
the safety net of an automated regression suite. In this section, we talk about
the emotional courage that is needed when transitioning to an agile team.

Have you worked in an organization where testers were stuck in their own
silo, unable to talk to either business stakeholders or other members of the
technical team? While you might jump at the chance to join a collaborative
agile environment, you might feel uncomfortable having to go ask the cus-
tomer for examples, or ask a programmer to help automate a test or bring up
a roadblock during the daily stand-up.

When you first join an agile team, or when your current team firsts transi-
tions to agile development, it’s normal to experience fear and have a list of
questions that need to be answered. How in the world are we going to be able
to complete testing tasks for each story in such a short time? How will testing
“keep up” with development? How do you know how much testing is
enough? Or maybe you’re a functional testing manager or a quality process
manager and it’s not clear to you where that role fits on an agile team, and
nobody has the answers. Agile testers need courage to find the answers to
those questions, but there are other reasons as well for having courage.

We need courage to let ourselves fail, knowing that at least we’ll fail fast and
be able to learn from that failure. After we’ve blown an iteration because we
didn’t get a stable build, we’ll start thinking of ways to ensure it doesn’t hap-
pen again.

We need courage to allow others to make mistakes, because that’s the only
way to learn the lesson.

26 CHAPTER 2 � TEN PRINCIPLES FOR AGILE TESTERS

I worked on a project where the agile coach insisted that I be on a separate test-
ing team (often a team of one!) whose work wasn’t included in the programmers’
tracking and velocity. I had to just go along and try this. After the release ran into
trouble because testing wasn’t finished, I asked the coach if we could try things
my way for an iteration or two. The whole-team approach worked much better.
Each story was tested and “done” by the end of the iteration, and the customers
were much happier with the results.

—Lisa

We need courage to ask for help, especially when the person who could pro-
vide that help looks pretty busy and stressed-out himself. Climbing out of
your old silo and joining in a team responsibility for success or failure takes
courage. Asking a question or pointing out what you think is a flaw requires
courage, even in a team supported by agile values and principles. Don’t be
afraid! Agile teams are open and generally accepting of new ideas.

Keep It Simple

Kent Beck’s Extreme Programming Explained advised us to do the simplest
thing that could possibly work. That doesn’t mean the first thing you try will
actually work, but it ought to be simple.

Agile testers and their teams are challenged to not only produce the simplest
possible software implementation but to take a simple approach to ensuring
that software meets the customer requirements. This doesn’t mean that the
team shouldn’t take some time to analyze themes and stories and think
through the appropriate architecture and design. It does mean that the team
might need to push back to the business side of the team when their re-
quirements might be a bit elaborate and a simpler solution will deliver the
same value.

Some of us worked in software organizations where we, as testers and quality
assurance staff, were asked to set quality standards. We believe this is back-
wards, because it’s up to the customer team to decide what level of quality they
want to pay for. Testers and other team members should provide information
to customers and help them consider all aspects of quality, including nonfunc-
tional requirements such as performance and security. The ultimate decisions
are up to the customer. The team can help the customer make good decisions
by its taking a simple, step-by-step approach to its work. Agile testing means

Lisa’s Story

APPLYING AGILE PRINCIPLES AND VALUES 27

doing the simplest tests possible to verify that a piece of functionality exists or
that the customer’s quality standard (e.g., performance) has been met.

Simple doesn’t mean easy. For testers, it means testing “just enough” with the
lightest-weight tools and techniques we can find that will do the job. Tools
can be as simple as a spreadsheet or a checklist. We need to automate regres-
sion tests, but we should push them down to the lowest level possible in or-
der to encourage fast feedback. Even simple smoke tests might be enough for
business-facing test automation.

Exploratory testing can be used to learn about your application and ferret
out hard-to-find bugs, but start with the basics, time-boxing side trips and
evaluating how far to go with edge cases. Simplicity helps us keep our focus
on risk, return on investment, and improving in the areas of greatest pain.

Practice Continuous Improvement

Looking for ways to do a better job is part of an agile tester’s mind-set. Of
course, the whole team should be thinking this way, because the central core
of agile is that the team always tries to do better work. Testers participate in
team retrospectives, evaluating what’s working well and what needs to be
added or tweaked. Testers bring testing issues up for the whole team to ad-
dress. Teams have achieved their greatest improvements in testing and all
other areas through the use of process improvement practices such as retro-
spectives and impediment backlogs. Some improvement ideas might become
task cards. For larger problems, teams focus on one or two issues at a time to
make sure they solve the real problem and not just the symptom.

Agile testers and their teams are always on the lookout for tools, skills, or
practices that might help them add more value or get a better return on the
customer’s investment. The short iterations of agile development make it
easier to try something new for a few iterations and see whether it’s worth
adopting for the long term.

Learning new skills and growing professionally are important to agile testers.
They take advantage of the many available free resources to improve their
specialized skills, such as exploratory testing. They go to meetings and con-
ferences, join mailing lists, and read articles, blogs, and books to get new
ideas. They look for ways to automate (or get help from their coworkers to
automate) mundane or repetitive tasks so they have more time to contribute
their valuable expertise.

Chapter 9, “Tool-
kit for Business-
Facing Tests that
Support the
Team,” and Chap-
ter 11, “Critiquing
the Product using
Technology-
Facing Tests,” give
examples of test
tools.

Part IV, “Test Auto-
mation,” explains
how to build a
“doable” test au-
tomation strategy.

28 CHAPTER 2 � TEN PRINCIPLES FOR AGILE TESTERS

Pierre Veragren, an SQA Lead at iLevel by Weyerhaeuser, identified a quality
we often see in agile teams ourselves: “AADD,” Agile Attention Deficit Disor-
der. Anything not learned quickly might be deemed useless. Agile team mem-
bers look for return on investment, and if they don’t see it quickly, they move
on. This isn’t a negative characteristic when you’re delivering production-
ready software every two weeks or even more often.

Retrospectives are a key agile practice that lets the team use yesterday’s ex-
perience to do a better job tomorrow. Agile testers use this opportunity to
raise testing-related issues and ask the team to brainstorm ways to address
them. This is a way for the team to provide feedback to itself for continual
improvement.

Our team had used retrospectives to great benefit, but we felt we needed some-
thing new to help us focus on doing a better job. I suggested keeping an “imped-
iment backlog” of items that were keeping us from being as productive as we’d
like to be. The first thing I wrote in the impediment backlog was our test environ-
ment’s slow response time. Our system administrator scrounged a couple of bar-
gain machines and turned them into new, faster servers for our test environments.
Our DBA analyzed the test database performance, found that the one-disk system
was the impediment, and our manager gave the go-ahead to install a RAID for bet-
ter disk access. Soon we were able to deploy builds and conduct our exploratory
testing much faster.

—Lisa

Respond to Change

When we worked in a waterfall environment, we got used to saying, “Sorry,
we can’t make this change now; the requirements are frozen. We’ll have to
put that in the first patch release.” It was frustrating for customers because
they realized that they didn’t do a great job on defining all their requirements
up front.

In a two-week agile iteration, we might have to say, “OK, write a card for that
and we’ll do it in the next iteration or next release,” but customers know they
can get their change when they want it because they control the priority.

Responding to change is a key value for agile practitioners, but we’ve found
that it’s one of the most difficult concepts for testers. Stability is what testers
crave so that they can say, “I’ve tested that; it’s done.” Continuously changing
requirements are a tester’s nightmare. However, as agile testers, we have to
welcome change. On Wednesday, we might expect to start stories A and B

Lisa’s Story

We’ll talk more
about retrospec-
tives and how they
can help your
team practice con-
tinuous improve-
ment in Chapter 19,
“Wrap Up the
Iteration.”

APPLYING AGILE PRINCIPLES AND VALUES 29

and then C the next Friday. By Friday, the customer could have re-prioritized
and now wants stories A, X, and Y. As long as we keep talking to the cus-
tomer, we can handle changes like that because we are working at the same
pace with the rest of team.

Some agile teams try to prepare in advance of the next iteration, perhaps by
writing high-level test cases, capturing business satisfaction conditions, or
documenting examples. It’s a tricky business that might result in wasted time
if stories are re-prioritized or greatly changed. However, distributed teams in
particular need extra feedback cycles to get ready for the iteration.

Our remote team member used to be our on-site manager. He’s a key player in
helping the business write and prioritize stories. He has in-depth knowledge of
both the code and the business, which helps him come up with creative solutions
to business needs. When he moved to India, we looked for ways to retain the
benefit of his expertise. Meetings are scheduled at times when he can participate,
and he has regular conference calls with the product owner to talk about upcom-
ing stories. We’ve had to switch from low-tech tools such as index cards to online
tools that we can all use.

Because the team was willing to make changes in the way we worked, and looked
for tools that helped keep him in the loop with ongoing changes, we were able to
retain the benefit of his expertise.

—Lisa

Some teams have analysts who can spend more time with the business ex-
perts to do some advance planning. Each team has to strike a balance be-
tween brainstorming solutions ahead of time and starting from scratch on
the first day of each iteration. Agile testers go with the flow and work with the
team to accommodate changes.

Automated testing is one key to the solution. One thing we know for sure: No
agile team will succeed doing only manual testing. We need robust automa-
tion in order to deliver business value in a time frame that makes it valuable.

Self-Organize

The agile tester is part of a self-organizing agile team. The team culture im-
bues the agile testing philosophy. When programmers, system administra-
tors, analysts, database experts, and the customer team think continually
about testing and test automation, testers enjoy a whole new perspective. Au-
tomating tests is hard, but it is much easier when you have the whole team

Lisa’s Story

30 CHAPTER 2 � TEN PRINCIPLES FOR AGILE TESTERS

working together. Any testing issue is easier to address when you have people
with multiple skill sets and multiple perspectives attacking it.

My team is a good example of a self-organizing team. When we implemented
Scrum, we had a buggy legacy system and no automated tests. Making any
changes to the code was risky at best. Our manager probably had some excellent
solutions to the problem, but he didn’t suggest them. Instead, we explored the
issues and came up with a plan.

The programmers would start implementing new stories in a new, testable archi-
tecture, using test-driven development. The testers would write manual regression
test scripts, and the entire team—programmers, testers, the system administrator,
and the DBA—would execute them on the last two days of every iteration. The
testers (at the time, this meant me) would work on an automated regression
smoke test suite through the user interface. Eventually, the architecture of the
new code would let us automate functional tests with a tool such as FitNesse.

We implemented this plan in baby steps, refining our approach in each iteration.
Using the skills of every member of the team was a much better approach than my
going off and deciding the automation strategy on my own.

—Lisa

When an agile team faces a big problem, perhaps a production showstopper
or a broken build, it’s everyone’s problem. The highest-priority issues are
problems for the whole team to solve. Team members discuss the issue right
away and decide how to and who will fix it.

There’s no doubt that Lisa’s manager could have mandated that the team take
this approach to solving its automation problems, but the team itself can
come up with the most workable plan. When the team creates its own ap-
proach and commits to it, its members adopt a new attitude toward testing.

Focus on People

Projects succeed when good people are allowed to do their best work. Agile
values and principles were created with the aim of enabling individual and
team success. Agile team members should feel safe and not have to worry
about being blamed for mistakes or losing their jobs. Agile team members re-
spect each other and recognize individual accomplishments. Everyone on an
agile team should have opportunities to grow and develop their skills. Agile
teams work at a sustainable pace that lets them follow disciplined practices
and keep a fresh perspective. As the Agile Manifesto states, we value individ-
uals and interactions over processes and tools.

Lisa’s Story

ADDING VALUE 31

In the history of software development, testers haven’t always enjoyed parity
with other roles on the development team. Some people saw testers as failed
programmers or second-class citizens in the world of software development.
Testers who don’t bother to learn new skills and grow professionally contribute
to the perception that testing is low-skilled work. Even the term “tester” has
been avoided, with job titles such as “Quality Assurance Engineer” or “Quality
Analyst” and team names such as “QA Department” given preference.

Agile teams that adhere to the true agile philosophy give all team members
equal weight. Agile testers know they contribute unique value to their teams,
and development teams have found they are more successful when their
team includes people with specific testing skills and background. For exam-
ple, a skilled exploratory tester may discover issues in the system that
couldn’t be detected by automated functional tests. Someone with deep test-
ing experience might ask important questions that didn’t occur to team
members without testing experience. Testing knowledge is one component
of any team’s ability to deliver value.

Enjoy

Working on a team where everyone collaborates, where you are engaged in
the project from start to finish, where business stakeholders work together
with the development team, where the whole team takes responsibility for
quality and testing, in our opinion, is nothing short of a tester’s Utopia.
We’re not alone in believing that everyone should find joy in their work. Ag-
ile development rewards the agile tester’s passion for her work.

Our jobs as agile testers are particularly satisfying because our viewpoint and
skills let us add real value to our teams. In the next section, we’ll explore how.

ADDING VALUE

What do these principles bring to the team? Together, they bring business
value. In agile development, the whole team takes responsibility for deliver-
ing high-quality software that delights customers and makes the business
more profitable. This, in turn, brings new advantages for the business.

Team members wear many hats, and agile development tends to avoid classi-
fying people by specialty. Even with short iterations and frequent releases, it’s
easy to develop a gap between what the customer team expects and what the
team delivers. Using tests to drive development helps to prevent this, but you
still need the right tests.

32 CHAPTER 2 � TEN PRINCIPLES FOR AGILE TESTERS

Agile testers not only think about the system from the viewpoint of stakehold-
ers who will live with the solution but they also have a grasp of technical
constraints and implementation details that face the development team. Pro-
grammers focus on making things work. If they’re coding to the right require-
ments, customers will be happy. Unfortunately, customers aren’t generally
good at articulating their requirements. Driving development with the wrong
tests won’t deliver the desired outcome. Agile testers ask questions of both
customers and developers early and often, and help shape the answers into the
right tests.

Agile testers take a much more integrated, team-oriented approach than
testers on traditional waterfall projects. They adapt their skills and experi-
ence to the team and project. A tester who views programmers as adversaries,
or sits and waits for work to come to her, or expects to spend more time
planning than doing, is likely to cling to skills she learned on traditional
projects and won’t last long on an agile team.

Peril: You’re Not “Really” Part of the Team

If you’re a tester, and you’re not invited to attend planning sessions, stand-
ups, or design meetings, you might be in a situation where testers are viewed
as somehow apart from the development team. If you are invited to these
meetings but you’re not speaking up, then you’re probably creating a percep-
tion that you aren’t really part of the team. If business experts are writing sto-
ries and defining requirements all by themselves, you aren’t participating as a
tester who’s a member of an agile team.

If this is your situation, your team is at risk. Hidden assumptions are likely to go
undetected until late in the release cycle. Ripple effects of a story on other
parts of the system aren’t identified until it’s too late. The team isn’t making the
best use of every team member’s skills, so it’s not going to be able to produce
the best possible software. Communication might break down, and it’ll be
hard to keep up with what the programmers and customers are doing. The
team risks being divided in an unhealthy way between developers and
testers, and there’s more potential that the development team will become
isolated from the customer team.

How can you avoid this peril? See if you can arrange to be located near the
developers. If you can’t, at least come to their area to talk and pair test. Ask
them to show you what they’re working on. Ask them to look at the test cases
you’ve written. Invite yourself to meetings if nobody else has invited you.
Make yourself useful by testing and providing feedback, and become a neces-
sity to the team.

SUMMARY 33

During story estimating and planning sessions, agile testers look at each fea-
ture from multiple perspectives: business, end user, production support, and
programmer. They consider the problems faced by the business and how the
software might address them. They raise questions that flush out assump-
tions made by the customer and developer teams. At the start of each itera-
tion, they help to make sure the customer provides clear requirements and
examples, and they help the development team turn those into tests. The
tests drive development, and test results provide feedback on the team’s
progress. Testers help to raise issues so that no testing is overlooked; it’s more
than functional testing. Customers don’t always know that they should men-
tion their performance and reliability needs or security concerns, but testers
think to ask about those. Testers also keep the testing approach and tools as
simple and lightweight as possible. By the end of the iteration, testers verify
that the minimum testing was completed.

Lines between roles on an agile team are blurred. Other team members
might be skilled at the same activities that testers perform. For example, ana-
lysts and programmers also write business-facing tests. As long as all testing
activities are performed, an agile team doesn’t necessarily require members
who identify themselves primarily as testers. However, we have found that
teams benefit from the skills that professional testers have developed. The ag-
ile principles and values we’ve discussed will help any team do a good job of
testing and delivering value.

SUMMARY

In this chapter, we covered principles for agile testers and the values we think an
agile tester needs to possess in order to contribute effectively to an agile team.

� An “agile testing mind-set” is customer-focused, results-oriented,
craftsman-like, collaborative, creative, eager to learn, and passionate
about delivering business value in a timely manner.

� Attitude is important, and it blurs the lines between testers, program-
mers, and other roles on an agile team.

Help customers develop their stories and acceptance tests. Push the “whole
team” attitude, and ask the team to work on testing problems. If your team is
having trouble adapting to agile development, suggest experimenting with
some new ideas for an iteration or two. Propose adopting the “Power of Three”
rule to promote good communication. Use the information in this book to show
that testers can help agile teams succeed beyond their wildest expectations.

34 CHAPTER 2 � TEN PRINCIPLES FOR AGILE TESTERS

� Agile testers apply agile values and principles such as feedback, com-
munication, courage, simplicity, enjoyment, and delivering value in
order to help the team identify and deliver the customer requirements
for each story.

� Agile testers add value to their teams and their organizations with
their unique viewpoint and team-oriented approach.

Part II

ORGANIZATIONAL CHALLENGES

When software development organizations implement agile development,
the testing or QA team often takes the longest to make the transition. Inde-
pendent QA teams have become entrenched in many organizations. When
they start to adapt to a new agile organization, they encounter cultural differ-
ences that are difficult for them to accept. In Part II, we talk about introduc-
ing change and some of the barriers you might encounter when transitioning
to agile. Training is a big part of what organizations making the transition
need, and it’s often forgotten. It’s also hard to see how existing processes such
as audits and process improvement frameworks will work in the agile envi-
ronment. Going from an independent QA team to an integrated agile team is
a huge change.

Chapter 4, “Team Logistics,” talks about the team structure, such as where a
tester actually fits into the team, and the never-ending question about tester-
developer ratio. We’ll also talk about hiring testers and what to look for in a
successful agile tester.

Traditional testing activities, such as logging bugs, keeping track of metrics,
and writing test plans, might not seem like a good fit in an agile project. We
introduce some of the typical processes that might need special care and at-
tention and discuss how to adapt existing quality processes.

You can expect to find ways that testers and test teams accustomed to a tra-
ditional waterfall type of development environment can change their orga-
nizational structure and culture to benefit from and add value to agile
development.

This page intentionally left blank

37

Chapter 3

CULTURAL CHALLENGES

Many organizational influences can impact a project, whether it uses an agile or
a traditional phased or gated approach. Organizational and team culture can
block a smooth transition to an agile approach. In this chapter, we discuss fac-
tors that can directly affect a tester’s role on an agile team.

ORGANIZATIONAL CULTURE

An organizational culture is defined by its values, norms, and assumptions.
An organization’s culture governs how people communicate, interrelate, and
make decisions, and it is easily seen by observing employee behavior.

Be Patient

Let Them Feel the Pain

Build Your Credibility

Professional Development

Beware the Quality Police Mentality

Vote with Your Feet

Cultural Change for Managers

Speaking the Manager’s Language

Management
Expectations

Cultural Challenges

Change Doesn’t
Come Easy

Introducing
Change

Talk about Fears

Give Team Ownership

Celebrate Success

Loss of Identity

Additional Roles

Lack of Training

Not Understanding Agile Concepts

Past Experiences

Cultural Differences among Roles

Barriers to
Success

Organizational
Culture

Quality Philosophy

Sustainable Pace

Customer Relationships

Organization Size

Empower Your Team

38 CHAPTER 3 � CULTURAL CHALLENGES

The culture of an organization can impact the success of an agile team. Agile
teams are best suited for organizations that allow independent thinking. For
example, if a company has a hierarchical structure and encourages a directive
management style for all its projects, agile teams will probably struggle. Past
experiences of the organization will also affect the success of a new agile
team. If a company tried agile and had poor results, people will be suspicious
of trying it again, citing examples of why it didn’t work. They might even ac-
tively campaign against it.

Organizational culture is too frequently not considered when attempts are
made to implement an agile process, leaving people wondering why it didn’t
work as promised. It’s hard to change established processes, especially if indi-
viduals feel they have a stake in the status quo. Each functional group devel-
ops a subculture and processes that meet their needs. They’re comfortable
with the way they work. Fear is a powerful emotion, and if it is not addressed,
it can jeopardize the transition to agile. If team members feel that a new agile
process threatens their jobs, they’ll resist the change.

We’ll talk specifically about how organizational culture affects testers work-
ing in an agile environment. The bibliography contains resources that deal
with other cultural aspects that may affect teams.

Quality Philosophy

Consider an organization’s quality philosophy in terms of how it determines
the acceptable level of software quality. Does it tolerate poor quality? Does it
take customers’ quality requirements into account, or is it just concerned
with getting the product into the customers’ hands as fast as it can?

When an organization lacks an overall quality philosophy and pressures
teams to get the product out without regard to quality, testers feel the pinch.
A team that tries to use agile development in such an environment faces an
uphill battle.

Some organizations have strong, independent test teams that wield a lot of
power. These teams, and their managers, might perceive that agile develop-
ment will take that power away. They might fear that agile runs contrary to
their quality philosophy. Evaluate your organization’s quality philosophy and
the philosophy of the teams that enforce it.

ORGANIZATIONAL CULTURE 39

Companies in which everyone values quality will have an easier time transi-
tioning to agile. If any one group has assumed ownership of quality, they’ll
have to learn to share that with everyone else on the team in order to succeed.

Whole-Team Ownership of Quality

In Chapter 1, “What Is Agile Testing, Anyway?,” we talked about the whole-
team approach to quality. For many testers and QA teams, this means a mind
shift from owning quality to having a participatory role in defining and
maintaining quality. Such a drastic shift in attitude is difficult for many testers
and QA teams.

Testers who have been working in a traditional setting might have a hard
time adjusting to their new roles and activities. If they’ve come from an orga-
nization where development and QA have an adversarial relationship, it may
be difficult to change from being an afterthought (if thought of at all) to be-
ing an integral part of the team. It can be difficult for both programmers and
testers to learn to trust each other.

Skills and Adaptability

Much has been observed about programmers who can’t adapt to agile prac-
tices—but what about testers who are used to building test scripts according
to a requirements document? Can they learn to ask the questions as the code

Peril: Quality Police Mentality
If an existing QA team has assumed the role of “Quality Police,” its members
usually enforce quality by making sure code reviews are completed and bugs
are religiously entered into the defect-tracking systems. They keep metrics
about the number of bugs found, and then are charged with making the final
decision as to whether to release the product.

We’ve talked to testers who brag about accomplishments such as going over a
development manager’s head to force a programmer to follow coding stan-
dards. We’ve even heard of testers who spend their time writing bugs about
requirements that aren’t up to their standards. This kind of attitude won’t fly
on a collaborative agile team. It fosters antagonistic behavior.

Another risk of the “Quality Police” role is that the team doesn’t buy into the
concept of building quality in, and the programmers start using testers as a
safety net. The team starts communicating through the bug-tracking system,
which isn’t a very effective means of communicating, so the team never “jells.”

Read on for ways to help avoid this peril.

40 CHAPTER 3 � CULTURAL CHALLENGES

is being built? Testers who don’t change their approach to testing have a hard
time working closely with the rest of the development team.

Testers who are used to doing only manual testing through the user interface
might not understand the automated approach that is intrinsic to agile de-
velopment. These testers need a lot of courage in order to face their changing
roles, because changing means developing new skill sets outside their com-
fort zones.

Factors that Help

Although there are many cultural issues to consider, most QA teams have a
focus on process improvement, and agile projects encourage continuous im-
provements and adaptability through the use of tools like retrospectives.
Most quality assurance professionals are eager to take what they’ve learned
and make it better. These people are adaptable enough to not only survive,
but to thrive in an agile project.

If your organization focuses on learning, it will encourage continual process
improvement. It will likely adopt agile much more quickly than organiza-
tions that put more value on how they react to crises than on improving their
processes.

If you are a tester in an organization that has no effective quality philosophy,
you probably struggle to get quality practices accepted. The agile approach will
provide you with a mechanism for introducing good quality-oriented practices.

Testers need time and training, just like everyone else who is learning to work
on an agile project. If you’re managing a team that includes testers, be sure to
give them plenty of support. Testers are often not brought in at the beginning
of a greenfield project and are then expected to just fit into a team that has
been working together for months. To help testers adjust, you may need to
bring in an experienced agile testing coach. Hiring someone who has previ-
ously worked on an agile team and can serve as a mentor and teacher will
help testers integrate with the new agile culture, whether they’re transition-
ing to agile along with an existing team or joining a new agile development
team.

Sustainable Pace

Traditional test teams are accustomed to fast and furious testing at the end of
a project, which translates into working weekends and evenings. During this
end-of-project testing phase, some organizations regularly ask their teams to

ORGANIZATIONAL CULTURE 41

put in 50, 60, or more hours each week to try to meet a deadline. Organiza-
tions often look at overtime as a measure of an individual’s commitment.
This conflicts with agile values that revolve around enabling people to do
their best work all the time.

In agile projects, you are encouraged to work at a sustainable pace. This
means that teams work at a consistent pace that sustains a constant velocity
that permits maintaining a high-quality standard. New agile teams tend be
overly optimistic about what they can accomplish and sign up for too much
work. After an iteration or two, they learn to sign up for just enough work so
no overtime is needed to complete their tasks. A 40-hour week is the normal
sustainable pace for XP teams; it is the amount of effort that, if put in week in
and week out, allows people to accomplish the most work over the long haul
while delivering good value.

Teams might need to work for short bursts of unsustainable pace now and
then, but it should be the exception, not the norm. If overtime is required for
short periods, the whole team should be working extra hours. If it’s the last
day of the sprint and some stories aren’t tested, the whole team should stay
late to finish the testing, not just the testers. Use the practices and techniques
recommended throughout this book to learn how to plan testing along with
development and allow testing to “keep up” with coding. Until your team
gets better at managing its workload and velocity, budget in extra time to
help even out the pace.

Customer Relationships

In traditional software development, the relationship between the develop-
ment teams and their customers is more like a vendor-supplier relationship.
Even if the customer is internal, it can feel more like two separate companies
than two teams working on a common goal of producing business value.

Agile development depends on close involvement from customers or, at the
very least, their proxies. Agile teams have invited customers to collaborate,
work in the same locations if possible, and be intimately involved with the
development process. Both sides learn each other’s strengths and weaknesses.

This change in the relationships needs to be recognized by both sides, and it
doesn’t matter whether the customer is internal or external. An open rela-
tionship is critical to the success of an agile project, where the relationship
between the customer team and the development team is more like a part-
nership than a vendor-supplier relationship.

42 CHAPTER 3 � CULTURAL CHALLENGES

In a large project I was on recently, the customer was actually a consortium of five
companies, with one of them being the software company creating the software.
Each of the companies supplied three of their best domain experts to represent
their needs. There was regular communication between these on-site users and
their own organizations, and they were also an integral part of the team they
worked with on a daily basis.

A steering committee with representatives from all five companies was kept in the
loop on progress and was brought in when decisions needed to be made at a
higher level.

—Janet

Having a few representative domain experts, while keeping all stakeholders
continually informed, is one approach to successful developer-customer col-
laboration. We’ll talk about others in Part V. Customers are critical to the
success of your agile project. They prioritize what will be built and have the
final say in the quality of the product. Testers work closely with customers to
learn requirements and define acceptance tests that will prove that condi-
tions of satisfaction are met. Testing activities are key to the development
team-customer team relationship. That’s why testing expertise is so essential
to agile teams.

Organization Size

The size of an organization can have great impact on how projects are run
and how the structure of a company matures. The larger the organization,
the more hierarchical the structure tends to be. As top-down communication
channels are developed, the reporting structures become directive and less
compatible with collaboration between technology and business.

Communication Challenges

Some agile processes provide ways to facilitate inter-team communication.
For example, Scrum has the “Scrum of Scrums,” where representatives from
multiple teams coordinate on a daily basis.

If you work in a large organization where the test teams or other specialized
resources are separate from the programming teams, work to find ways to
keep in constant touch. For example, if your database team is completely sep-
arate, you need to find a way to work closely with the database specialists in
order to get what you need in a timely manner.

Janet’s Story

ORGANIZATIONAL CULTURE 43

Another problem that tends to be more common in large companies is that
customers might not be as accessible as they are in smaller companies. This is
a big obstacle when you try to gather requirements and examples and seek to
get customer involvement throughout the development cycle. One solution
is to have testers or analysts with domain expertise act as customer proxies.
Communication tools can help deal with such situations as well. Look for
creative ways to overcome the problems inherent in big companies.

Conflicting Cultures within the Organization

With large software development shops, agile development is often first im-
plemented in one team or just a few teams. If your agile team has to coordi-
nate with other teams using other approaches such as phased or gated
development, you have an extra set of challenges. If some of the external
teams tend to be dysfunctional, it’s even harder. Even when an entire company
adopts agile, some teams make the transition more successfully than others.

Your team might also run into resistance from specialist teams that are feel-
ing protective of their particular silos. Lisa talked to a team whose members
could not get any help from their company’s configuration management
team, which was obviously a major obstacle. Some development teams are
barred from talking directly to customers.

If third parties are working on the same system your team is working on,
their cultures can also cause conflicts. Perhaps your team is the third party,
and you’re developing software for a client. You will need to think about how
to mitigate culture-based differences. Part V goes into more detail about
working with other teams and third parties, but here are a few ideas to get
you started.

Advanced Planning If you have to coordinate with other teams, you will need
to spend time during release planning, or before the start of an iteration, to
work with them. You need time to adapt your own processes to work with oth-
ers’ processes, and they might need to change their processes to accommodate
your requests. Consider arranging access to shared resources such as perfor-
mance test specialists or load test environments, and plan your own work
around others’ schedules. Your stakeholders might expect certain deliverables,
such as formal test plans, that your own agile process doesn’t include. Some ex-
tra planning will help you to work through these cultural differences.

Act Now, Apologize Later We hesitate to make suggestions that might cause
trouble, but often in a large organization, the bureaucratic wheels turn so

Chapter 16, “Hit
the Ground Run-
ning,” describes
how one large
organization uses
functional analysts
to mitigate prob-
lems due to re-
mote customers.

Chapter 15,
“Tester Activities in
Release or Theme
Planning,” and
Chapter 16, “Hit
the Ground Run-
ning,” talk about
what testers can
do to help with
planning and co-
ordinating with
other teams.

44 CHAPTER 3 � CULTURAL CHALLENGES

slowly that your team might have to figure out and implement its own solu-
tions. For example, the team that couldn’t get cooperation from the configura-
tion management team simply implemented its own internal build process and
kept working on getting it integrated with the officially sanctioned process.

If there aren’t official channels to get what you need, it’s time to get cre-
ative. Maybe testers have never talked directly to customers before. Try to
arrange a meeting yourself, or find someone who can act as a customer proxy
or go-between.

Empower Your Team

In an agile project, it is important for each development team to feel empow-
ered to make decisions. If you’re a manager and you want your agile teams to
succeed, set them free to act and react creatively. The culture of an organiza-
tion must adapt to this change for an agile project to be successful.

BARRIERS TO SUCCESSFUL AGILE ADOPTION
BY TEST/QA TEAMS

Any change faces barriers to success. Organizational culture, as we discussed
in the previous section, might be the largest obstacle to overcome. Once or-
ganizational culture has become well established, it’s very hard to change. It
took time for it to form, and once in place, employees become committed to
the culture, which makes it extremely resistant to alteration.

This section discusses specific barriers to adoption of agile development
methods that can be encountered by your testers and QA teams.

Loss of Identity

Testers cling to the concept of an independent QA team for many reasons,
but the main reason is fear, specifically:

� Fear that they will lose their QA identity
� Fear that if they report to a development manager, they will lose sup-

port and programmers will get priority
� Fear that they lack the skills to work in an agile team and will lose

their jobs
� Fear that when they’re dispersed into development teams they won’t

get the support they need
� Fear that they, and their managers, will get lost in the new organization

Chapter 4, “Team
Logistics,” talks
more about sepa-
rate functional
teams and how
they affect the
agile tester.

BARRIERS TO SUCCESSFUL AGILE ADOPTION BY TEST/QA TEAMS 45

We often hear of QA managers asking questions such as, “My company is im-
plementing agile development. How does my role fit in?” This is directly re-
lated to the “loss of identity” fears.

Additional Roles

We know from experience that new teams are often missing specialists or ex-
pertise that might be key to their success. Lisa’s team has run into obstacles
so large that the only thing to do was sit back and ask, “What role are we
missing on our team that is holding us back? What do we need? Another de-
veloper, another tester, a database designer?” We all know that testing is a
vast field. Maybe you need someone experienced in testing on an agile team.
Or maybe you need a performance testing specialist. It’s critical that you take
the time to analyze what roles your product needs to be successful, and if you
need to fill them from outside the team, do it.

It’s critical that everyone already on the product team understand their role
or figure out what their role is now that they’re part of a new agile team. Do-
ing this requires time and training.

Lack of Training

We hosted a session in the “Conference within a Conference” at Agile 2007
that asked people what testing-related problems they were having on their
agile teams. One of the attendees told us that they split up their test organiza-
tion as advocated by the agile literature. However, they put the testers into
development units without any training; within three months, all of the
testers had quit because they didn’t understand their new roles. Problems like
these can be prevented with the right training and coaching.

When we started working with our first agile teams, there weren’t many re-
sources available to help us learn what agile testers should do or how we
should work together with our teams. Today, you can find many practitio-
ners who can help train testers to adapt to an agile environment and help test
teams make the agile transition. Local user groups, conferences, seminars,
online instruction, and mailing lists all provide valuable resources to testers
and managers wanting to learn. Don’t be afraid to seek help when you need
it. Good coaching gives a good return on your investment.

Not Understanding Agile Concepts

Not all agile teams are the same. There are lots of different approaches to agile
development, such as XP, Scrum, Crystal, FDD, DSDM, OpenUP, and various

Chapter 4, “Team
Logistics,” covers
ideas that can be
used to help peo-
ple adapt.

46 CHAPTER 3 � CULTURAL CHALLENGES

mixes of those. Some self-titled “agile” teams are not, in our opinion, really
practicing agile. Plenty of teams simply adopt practices that work for them
regardless of the original source, or they invent their own. That’s fine, but if
they don’t follow any of the core agile values and principles, we question giv-
ing them an agile label. Releasing every month and dispensing with docu-
mentation does not equate to agile development!

If different team members have opposing notions of what constitutes “agile,”
which practices they should use, or how those practices are supposed to be
practiced, there’s going to be trouble. For example, if you’re a tester who is
pushing for the team to implement continuous integration, but the pro-
grammers simply refuse to try, you’re in a bad spot. If you’re a programmer
who is unsuccessful at getting involved in some practices, such as driving de-
velopment with business-facing tests, you’re also in for conflict.

The team must reach consensus on how to proceed in order to make a suc-
cessful transition to agile. Many of the agile development practices are syner-
gistic, so if they are used in isolation, they might not provide the benefits that
teams are looking for. Perhaps the team can agree to experiment with certain
practices for a given number of iterations and evaluate the results. It could
decide to seek external input to help them understand the practices and how
they fit together. Diverse viewpoints are good for a team, but everyone needs
to be headed in the same direction.

Several people we’ve talked to described the “mini-waterfall” phenomenon
that often occurs when a traditional software development organization im-
plements an agile development process. The organization replaces a six-
month or year-long development cycle with a two- or four-week one, and just
tries to squeeze all of the traditional SDLC phases into that short period. Nat-
urally, they keep having the same problems as they had before. Figure 3-1
shows an “ideal” version of the mini-waterfall where there is a code-and-fix
phase and then testing—the testing comes after coding is completed but be-
fore the next iteration starts. However, what really happens is that testing gets
squeezed into the end of the iteration and usually drags over into the next iter-
ation. The programmers don’t have much to fix yet, so they start working on
the next iteration. Before long, some teams are always an iteration “behind”
with their testing, and release dates get postponed just as they always did.

Everyone involved with delivering the product needs time and training to
understand the concepts behind agile as well as the core practices. Experi-
enced coaches can be used to give hands-on training in practices new to the
team, such as test-driven development. In larger organizations, functional

BARRIERS TO SUCCESSFUL AGILE ADOPTION BY TEST/QA TEAMS 47

test managers can become practice leads and can provide support and re-
sources so that testers learn how to communicate and collaborate with their
new teams. Programmers and other team members need similar help from
their functional managers. Strong leadership will help teams find ways to mi-
grate away from “mini-waterfall” to true collaborative development, where
coding and testing are integrated into one process.

XP has developed a radar chart to help teams determine their level of adapta-
tion to key XP practices. They measure five different key practices: team, pro-
gramming, planning, customer, and pairing, and they show the level of
adaptation to practices by teams. Figure 3-2 shows two such charts. The chart

Code
& Fix

Code

Test

Iteration 1

Requirements

Code
& Fix

Code

Test

Iteration 2

Requirements

Code
& Fix

Code

Test

Iteration 3

Requirements Requirements

Figure 3-1 A mini-waterfall process

See the bibliogra-
phy for a link to
more information
about XP Radar
charts.

Programming

Planning

CustomerPairing

Team

Programming

Planning

CustomerPairing

Team

Figure 3-2 XP Radar charts

48 CHAPTER 3 � CULTURAL CHALLENGES

on the left shows successful adaptation, while the chart on the right shows
that there are some problem areas.

Past Experience/Attitude

Lots of people have been through changes that didn’t stick. Some develop-
ment organizations have lived through a succession of the “methodology du
jour.” They throw up their hands and wonder, “Why should we do it again?”
People get stuck in their old, unsuccessful patterns. Even when they try
something new, they might revert to bad old habits when under stress. The
following are just a few examples of people resisting change due to past expe-
rience and their perception of “the way things are”:

� A tester sat in his cube and wouldn’t talk with the programmers about
problems he was having. He complained that programmers didn’t
understand what he wanted.

� A tester couldn’t shake his existing attitude that programmers didn’t
know how to write good code, or how to test it. His condescending at-
titude was clear to all, and his credibility as a tester was challenged.

� A customer threw up his hands when the programmers did some-
thing he didn’t like, because they “always” do what they want anyhow.

When faced with a transition to agile development, people like this often leave
without giving the new process a chance. Agile development isn’t for everyone,
but training and time to experiment can help adjust attitudes. Ask everyone to
be part of the solution, and work together to find out what processes and prac-
tices work best for their particular situations. The self-organizing team can be
a powerful tool to use to reassure all members of the development team that
they’re in control of their own destiny.

Cultural Differences among Roles

Each new agile team member is making the transition from a different per-
spective. Programmers are often used to writing production code and getting
it released as quickly as possible. System administrators and database experts
might be accustomed to working in their own silo, performing requests on
their own schedule. Customers may never have talked directly with develop-
ment team members. Testers might be used to coming in at the end of the
project and not interacting much at all with programmers.

It’s no wonder a transition to agile can be scary. Teams can come up with
rules and guidelines to help them communicate and work well together. For

INTRODUCING CHANGE 49

example, Lisa joined a new agile team whose rule was that if someone asked
you to pair with her, you had to agree. You might not be able to do it right
that minute, but as soon as you could free yourself up, you had to go help
your teammate.

Identify what people doing different activities need, and find ways to provide
it. Customers need some way to know how development is progressing and
whether their conditions of satisfaction are being met. Developers need to
know business priorities and requirements. Testers need ways to capture ex-
amples and turn them into tests. All team members want to feel they are val-
ued, first-class team members. Each team member also needs to feel safe and
to feel free to raise issues and try new ideas. Understanding the viewpoint of
each role helps teams through the transition.

INTRODUCING CHANGE

When implementing any change, be aware of the side effects. The first stage
may be chaos; your team isn’t sure what the new processes are, some groups
are loyal to old ways, and some people are unsure and disruptive. People mis-
take this chaotic stage for the new status quo. To avoid this, explain the
change model up front and set expectations. Expect and accept perceived
chaos as you implement agile processes. Find the areas of the most pain, and
determine what practices will solve the problem so that you can get some im-
mediate progress out of the chaos.

Talk about Fears

When you start iterative development, use retrospectives to provide people
with a place to talk about their fears and a place in which they can give feed-
back. Let people know that it’s normal to be fearful. Be open; teach them it is
acceptable to say they are fearful or uncomfortable. Discuss each source of
fear, learn from the discussion, make decisions, and move on. Fear is a com-
mon response to change. Forcing people to do something they don’t want is
detrimental to positive change. Lead by example.

Janet and I each joined our first XP teams at a time when many XP practitioners
didn’t see any place for testers on an XP team. XP had a “Customer Bill of Rights”
and a “Programmer Bill of Rights,” but the “Tester Bill of Rights” was conspicuously
absent. Tip House and I came up with our own “Tester Bill of Rights” in order to give
testers the support and courage to succeed on agile teams. Over the years, many
testers have told us how much this helped them and their teams learn how testers
work together with other team members. I don’t like too many rules, but they can

Lisa’s Story

50 CHAPTER 3 � CULTURAL CHALLENGES

be a good thing when they help the team to overcome cultural barriers and to
understand how to work in new ways. The following list presents a “Tester Bill of
Rights.” We encourage you to use it to help testers integrate into agile teams.

• You have the right to bring up issues related to testing, quality, and process at
any time.

• You have the right to ask questions of customers, programmers, and other
team members and receive timely answers.

• You have the right to ask for and receive help from anyone on the project
teams, including programmers, managers, and customers.

• You have the right to estimate testing tasks and have these included in story
estimates.

• You have the right to the tools you need to perform testing tasks in a timely
manner.

• You have the right to expect your entire team, not just yourself, to be responsi-
ble for quality and testing.

—Lisa

Give Team Ownership

A critical success factor is whether the team takes ownership and has the abil-
ity to customize its approach. People can change their attitudes and their
perceptions if they are given the right help. Lisa was able to observe Mike
Cohn work with her team as a coach. As a self-organizing team, the team had
to identify and solve its own problems. Mike made sure they had the time
and resources to experiment and improve. He made sure that the business
understood that quality was more important than quantity or speed. Every
team, even a self-organizing team, needs a leader who can effectively interact
with the organization’s management team.

Celebrate Success

Implementing change takes time and can be frustrating, so be sure to cele-
brate all successes your team achieves. Pat yourselves on the back when you
meet your goal to write high-level test cases for all stories by the fourth day of
the iteration. Get the team together for a trivia game or lunch when you’ve
just delivered an iteration’s worth of work. Acknowledgment is important if
you want a change to stick.

Integrating testers into development teams while letting them continue to re-
port to a supportive QA manager is one way to ease the transition to agile de-
velopment. Testers can find ways to move from an adversarial relationship
with programmers to a collaborative one. They can show how they can help

Chapter 18, “Cod-
ing and Testing,”
covers how testers
and programmers
work together
throughout the
development
process.

INTRODUCING CHANGE 51

Overcoming Resistance to Agile
Mark Benander, a Quality Assurance Team Lead with Quickoffice, was on his
fourth project on an agile team. The first was a major rewrite of their entire
application, with a team of eight developers, one tester, and no test auto-
mation tool. He told us about his experiences in overcoming his concerns
about agile development, especially about reporting to a development
manager.

We were in a matrix management type of system, where a tester
reports to a development manager, but the test manager is still offi-
cially the supervisor. This comforted me somewhat, but the majority
of the issues I expected to occur, such as being overruled whenever
I found an issue, never did. My concern wasn’t that I’d really end up
thinking like a developer and just releasing anything, but that my
manager, who was not a tester, wouldn’t care as much, and might
not back up my concerns with the application.

Ultimately, I think I ended up thinking slightly more like a developer,
being less concerned about some of the small bugs. My better
understanding of the application’s workings made me understand
that the risk and cost of fixing it was potentially much more risky
than the benefit. I believe that thinking like this isn’t a bad thing as
long as we are always mindful of the end customer impact, not just
the internal cost.

The corollary to my thinking more like a developer is that the
developers began thinking more like testers. I’m actually a fan of
the adversarial role of the tester, but in a relaxed way. I actually
give the developers gold stars (the little sticker kind you used to
get on your spelling test in second grade) when they implement an
area of code that is especially solid and user friendly, and I give out
pink stars when they “implement” a bug that is especially heinous.
They groan when I come over, wondering what I’ve found now,
and take great joy in “making my job boring” by testing their code
themselves and giving me nothing to find. Needless to say, you
need the right group to be able to work with this kind of faux-
hostile attitude. I’ve never been in another company where this
would have worked, but I’ve never worked in another company
where spontaneous nerf gunfights broke out either.

Mark’s experience matches our own and that of many other testers we’ve met
who’ve moved from traditional to agile development. If you’re a tester who
just joined an agile team, keep an open mind and consider how your team-
mates might have different viewpoints.

52 CHAPTER 3 � CULTURAL CHALLENGES

the team understand the customers’ needs and deliver appropriate business
value. They can host enjoyable activities to build good team interactions. Hav-
ing cookies or chocolate available for teammates is a good way to get them to
walk over to your desk! Patience and a sense of fun are big advantages.

MANAGEMENT EXPECTATIONS

When we think of challenges involved with adopting agile, we generally
think of the actual team and the issues it encounters. However, for success-
ful agile adoption, management buy-in is critical. In a phased project, man-
agement gets regular updates and sign-off documents indicating the end of
each phase. Upper-level managers might not understand how they’ll be able
to gauge agile project progress. They might fear a loss of control or lack of
“process.”

Cultural Changes for Managers

In an agile project, expectations change. In her previous life in waterfall
projects, Janet remembers hearing comments like “this feature is 90% done”
for weeks. Those types of metrics are meaningless in agile projects. There are
no sign-offs to mark the end of a phase, and the “doneness” of a project isn’t
measured by gates.

Meaningful metrics are determined by each project team. In Scrum, sprint
and release burndown charts track story completion and can give managers a
measure of progress, but not any hard “dates” to use for billing customers.
Test matrices can be used to track functionality test coverage but do not pro-
vide sign-off documentation.

The other change that is difficult for some managers to understand is letting
the teams make their own technical decisions and manage their own work-
loads. It’s no longer the manager who decides what is good enough. It is the
team (which includes the customer) that defines the level of quality necessary
to deliver a successful application.

Agile teams estimate and work in smaller chunks of time than traditional
teams. Rather than building in contingency, teams need to plan enough time
for good design and execution in order to ensure that technical debt does not
increase. Rather than managing the team’s activities at a low level, managers
of agile teams focus on removing obstacles so that team members can do
their best work.

MANAGEMENT EXPECTATIONS 53

I asked the vice president in charge of a large agile project what he found to be
the most difficult part in the new agile environment from a management perspec-
tive. He said that in a traditional waterfall type project, the reports all showed that
everything was going according to plan until the very end, and then everything
was in a panic state and “nothing worked.”

In the agile project, there were problems every day that needed to be addressed.
Agile projects were more work on a consistent basis, but at least he was getting
realistic reports. There were no surprises at the end of the project.

—Janet

Business stakeholders don’t like surprises. If they can be convinced to give
the team enough time and resources to make the transition, they’ll find that
agile development lets them plan more accurately and achieve business goals
in steady increments.

Sometimes it’s actually management that drives the decision to start doing
agile development. The business leaders at Lisa’s company chose to try agile
development in order to solve its software crisis. To be effective, they needed
to have a different set of management expectations. They needed to be sensi-
tive to the difficulty of making big changes, especially in an organization that
wasn’t functioning well.

In all cases, managers need lots of patience during what might be a long tran-
sition to a high-functioning agile team. It’s their job to make sure they pro-
vide the necessary resources and that they enable every individual to learn
how to do high-quality work.

A Testing Manager’s Transition Tale

Tae Chang manages a team at DoubleClick that conducts end-to-end testing
to ensure that all integration points, both up and downstream from the target
of change, are covered. When they implemented Scrum, the development
teams were reorganized into numerous application teams. Communication
problems resulted in missed dependencies, so Tae’s team stepped up to help
make sure problems were detected early.

Tae told us, “I believe agile development effectively magnified the importance
of cross-team communication and a coordinated end-to-end testing effort. It
was not easy to work out a noninvasive (in terms of fitting into current sprint

Janet’s Story

54 CHAPTER 3 � CULTURAL CHALLENGES

If you’re a QA manager, be prepared to help your testers overcome their frus-
trations with moving from defined, sequential testing stages to fast-paced it-
erations where they perform widely varied tasks on any given day. Help them
adapt to the idea that testing is no longer a separate activity that occurs after
development but that testing and coding are integrated activities.

If you’re a tester or other team member who isn’t getting the support you
need in your transition to agile development, think about the difficulties
your managers might be having in understanding agile development. Help
them to understand what kinds of support you need.

structure) integration testing process; in fact, we are still tweaking it, but the
overall benefit of such a testing effort is apparent.” Their teams began to slide
into the “mini-waterfall” trap. “In retrospect,” explains Tae, “one of the rea-
sons for this is because we started with the agile process before internalizing
agile practices.”

Knowing that test automation and continuous integration were key, the
teams at DoubleClick came up with new ideas, such as a specialized build
and automation team to help the development teams cope. They brought in
expert training to help them learn TDD and pair programming. They started
taking steps to address their legacy system’s technical debt.

Tae’s team attends all of the sprint planning and review sessions, using both
formal and informal communication to facilitate cross-functional communica-
tion and coordinate testing and releases. He has found that it helps to keep
meetings small, short, and relevant. He’s also a proponent of everyone sitting
together in an open work area, as opposed to sectioned-off cubes.

Tae offers the following advice to testers making the transition to agile:

“Agile development in general will initially frustrate testers in that they will
not have access to full requirements documentation or defined stages of
testing. In my view of agile development, at any given moment, the tester
will be engaged in tasks from multiple stages of the traditional development
process. A tester can be sitting in a design session with engineering and
product management (she should be taking notes here and start thinking of
areas of risk where proposed code change will most likely impact) and on
the same day work on automating and running test cases for the proposed
changes. It's a change in mind-set, and some people are quicker to adapt
than others.”

Tae’s experience mirrors our own and that of many other teams we’ve
talked to.

MANAGEMENT EXPECTATIONS 55

Speaking the Manager’s Language

What do business managers understand best? It’s the bottom line—the ROI
(return on investment). To get the support you need from your manage-
ment, frame your needs in a context that they can understand. Your team’s
velocity translates into new features to make the business more profitable. If
you need time and funds to learn and implement an automated test tool, ex-
plain to management that over time, automated regression tests will let your
team go faster and deliver more functionality in each iteration.

My team needs big blocks of time to do risky refactoring, such as trying to split the
code base into multiple modules that can be built independently. We also need
time to upgrade to the latest versions of our existing tools, or to try out new tools.
All of these tasks are difficult to integrate into a two-week sprint when we’re also
trying to deliver stories for the business.

We explained to our management that if these “engineering” tasks were put off
too long, our technical debt would accumulate and our velocity would slow. The
number of story points delivered each iteration would decline, and new stories
would take longer to code. It would take longer and longer for the business to
get the new features it needed in order to attract customers.

It was hard for the business to agree to let us devote a two-week iteration every
six months to do the internal work we needed to manage our technical debt, but
over time they could see the results in our velocity. Recently, one of the managers
actually asked if we might need to have “engineering sprints” more often. Both the
product and the team are growing, and the business wants to make sure we grow
our infrastructure and tools, too.

—Lisa

Like all members of an agile team, managers need to learn a lot of new con-
cepts and figure out how they fit as team members. Use big visible charts (or
their virtual equivalents, as needed) to make sure they can follow the progress
of each iteration and release. Look for ways to maximize ROI. Often, the busi-
ness will ask for a complex and expensive feature when there is a simpler and
quicker solution that delivers similar value. Make sure you explain how your
team’s work affects the bottom line. Collaborate with them to find the best
way for stakeholders to express the requirements for each new feature.

Budget limitations are a reality most teams face. When resources are limited,
your team needs to be more creative. The whole-team approach helps. Per-
haps, like Lisa’s team, your team has a limited budget to buy software, and so

Lisa’s Story

56 CHAPTER 3 � CULTURAL CHALLENGES

you tend to look at open-source test automation tools that usually don’t have
a large up-front purchase cost. A tool that uses the same language as the ap-
plication won’t help the non-programming testers unless the programmers
collaborate with them to automate the tests. Leveraging all of the expertise
on the team helps you work within the business limitations.

As with all challenges your team encounters, experiment with new ways that
the development team and management can help each other to build a valu-
able product. At the same time, regardless of your development approach,
you might have to make sure that some processes, such as conformance to
audit requirements, receive the necessary attention.

CHANGE DOESN’T COME EASY

Agile development might seem fast-paced, but change can seem glacial. Teams
that are new to agile will be slow to master some practices they’ve committed
to using. We’ve met many testers who are frustrated that their “agile” develop-
ment cycles are actually mini-waterfall cycles. These testers are still getting
squeezed; it just happens more often. Iterations are over before stories can be
tested. Programmers refuse or aren’t able to adopt critical practices such as
TDD or pairing. The team leaves responsibility for quality in the hands of the
testers, who are powerless to make changes to the process.

There’s no magic that you can use to get your team to make positive changes,
but we have some tips for testers who want to get their teams to change in
positive ways.

Be Patient

New skills such as TDD are hard. Find ways to help your team get time to
master them. Find changes you can make independently while you wait. For
example, while programmers learn to write unit tests, implement a GUI test
tool that you can use with minimal help. Help the team make baby steps. Re-
member that when people panic, they go back to their old habits, even
though those habits didn’t work. Focus on tiny positive increments.

Let Them Feel Pain

Sometimes you just have to watch the train wreck. If your suggestions for im-
provement were rebuffed, and the team fails, bring your suggestion up again
and ask the team to consider trying it for a few iterations. People are most
willing to change in the areas where they feel the most pain.

CHANGE DOESN’T COME EASY 57

Build Your Credibility

You might now be working with programmers who haven’t worked closely
with testers before. Show them how you can help. Go to them with issues
you’ve found rather than opening bug reports. Ask them to review code with
you before they check it in. When they realize you’re contributing real value,
they’re more likely to listen to your ideas.

Work On Your Own Professional Development

Read books and articles, go to user group meetings and conferences, and
learn a new tool or scripting language. Start learning the language your ap-
plication is coded in, and ask the programmers on your team if you can
pair with them or if they’ll tutor you. Your coworkers will respect your de-
sire to improve your skills. If your local user group is willing to listen to
your presentation on agile testing, or a software newsletter publishes your
automation article, your teammates might notice you have something
worth hearing too.

Beware the Quality Police Mentality

Be a collaborator, not an enforcer. It might bug you if programmers don’t
follow coding standards, but it’s not your job to make sure that they do so.
Raise your issues with the team and ask for their help. If they ignore a critical
problem that is really hurting the team, you might need to go to your coach
or manager for help. But do that in a “please help me find a solution” vein
rather than a “make these people behave” one. If you’re seeing a problem,
chances are high that others see it too.

Vote with Your Feet

You’ve been patient. You’ve tried every approach you can think of, but your
management doesn’t understand agile development. The programmers still
throw buggy, untestable code “over the wall,” and that code is released as is
despite your best efforts, including working 14-hour days. Nobody cares
about quality, and you feel invisible despite your best efforts. It might be time
to look for a better team. Some teams are happy the way they are and simply
don’t feel enough pain to want to change. Lisa worked on a team that thrived
on chaos, because there were frequent opportunities to figure out why the
server crashed and be a hero. Despite a successful project using agile prac-
tices, they went back to their old habits, and Lisa finally gave up trying to
change them.

See the bibliogra-
phy for some
good resources
on being an effec-
tive change agent
for your team.

58 CHAPTER 3 � CULTURAL CHALLENGES

SUMMARY

In this chapter, we talked about how cultural issues can affect whether testers
and their teams can make a successful transition to doing agile development.

� Consider organizational culture before making any kind of change.
� Testers have an easier time integrating into agile teams when their

whole organization values quality, but testers with a “quality police”
mind-set will struggle.

� Some testers might have trouble adjusting to the “whole team” own-
ership of quality, but a team approach helps overcome cultural
differences.

� Customer teams and developer teams must work closely together, and
we showed how testers can be key in facilitating this relationship.

� Large organizations that tend to have more isolated specialist teams
face particular cultural challenges in areas such as communication
and collaboration.

� Major barriers to success for testers for agile adoption include fear,
loss of identity, lack of training, previous negative experiences with
new development processes, and cultural differences among roles.

� To help introduce change and promote communication, we suggest
encouraging team members to discuss fears and celebrating every
success, no matter how small.

� Guidelines such as a “Tester Bill of Rights” give testers confidence to
raise issues and help them feel safe as they learn and try new ideas.

� Managers face their own cultural challenges, and they need to provide
support and training to help testers succeed on agile teams.

� Testers can help teams accommodate manager expectations by pro-
viding the information managers need to track progress and deter-
mine ROI.

� Change doesn’t come easy, so be patient, and work on improving
your own skills so you can help your team.

59

Chapter 4

TEAM LOGISTICS

Agile teams stress that face-to-face communication is critical to the success of a
project. They also encourage using the “whole-team” approach. What does this
mean to the testers? This chapter talks about some of the issues involving team
structure and physical logistics. There’s more to creating a cohesive team than
just moving chairs and desks.

TEAM STRUCTURE

Having separate functional groups can make life difficult for agile teams.
Constant communication is critical. Team members need to work closely
with one another, whether the work is done virtually or in the same physical
location.

We use the terms “QA team” and “test team” interchangeably here. It can be
argued whether “QA teams” are really doing quality assurance or not, but the
term has become a common one attached to test teams, so we use it too.

Team Logistics

Physical Logistics

Independent QA Team

Integrating Testers into Agile Project

Agile Project Teams

Team StructureBuilding a
Team

Tester-Developer Ratio

Hiring an Agile Tester

Self-Organizing Team

Involving Other Teams

Every Team Member Has Equal Value

Performance and Rewards

What You Can Do

Resources

60 CHAPTER 4 � TEAM LOGISTICS

Independent QA Teams

Many organizations, both large and small, think it is important to have an in-
dependent QA or test team in order to get an honest opinion about the quality
of a product. We’re often asked the questions, “Is there a place for a test organi-
zation in the whole-team approach?” and “If so, what is its role?”

Some of the reasons we’re given for wanting to keep the QA team separate
from the development team are:

� It is important to have that independent check and audit role.
� The team can provide an unbiased and outside view relating to the

quality of the product.
� If testers work too closely with developers, they will start to think like

developers and lose their customer viewpoint.
� If the testers and developers report to the same person, there is a dan-

ger that the priority becomes delivering any code rather than deliver-
ing tested code.

Teams often confuse “independent” with “separate.” If the reporting struc-
ture, budgets, and processes are kept in discrete functional areas, a division
between the programmers and testers is inevitable. This can lead to friction,
competition, and an “us versus them” attitude. Time is wasted on duplicate
meetings, programmers and testers don’t share a common goal, and infor-
mation sharing is nonexistent.

There are reasons for having a QA manager and an independent test team.
However, we suggest changing the reasons as well as the structure. Rather
than keeping the testers separate as an independent team to test the applica-
tion after coding, think about the team as a community of testers. Provide a
learning organization to help your testers with career development and a
place to share ideas and help each other. If the QA manager becomes a prac-
tice leader in the organization, that person will be able to teach the skills that
testers need to become stronger and better able to cope with the ever-changing
environment.

We don’t believe that integrating the testers with the project teams prevents
testers from doing their jobs well. In fact, testers on agile teams feel very
strongly about their role as customer advocate and also feel they can influ-
ence the rest of the team in quality thinking.

TEAM STRUCTURE 61

Integration of Testers into an Agile Project

The whole-team approach in agile development has provoked many organi-
zations that have adopted agile development to disband their independent
QA teams and send their testers to work with the project groups. While this
sounds great, some organizations have found that it doesn’t work as ex-
pected. More than one organization has had most, if not all, of their testers
quit when they found themselves on an agile development team with no idea
what they should be doing.

Developers get training on pair programming, test-driven development, and
other agile practices, while testers often seem to get no training at all. Many
organizations fail to recognize that testers also need training on pair testing,
working with incomplete and changing requirements, automation, and all of
the other new skills that are required. It’s critical that testers receive training
and coaching so that they can acquire the skills and understanding that will
help them succeed, such as how to work with customers to write business-
facing tests. Programmers also might need coaching to understand the im-
portance of business-facing tests and the whole-team approach to writing
and automating tests.

Janet has helped integrate several independent test teams into agile projects.
She finds that it can take up to six months for most testers to start feeling
confident about working with the new process.

The pairing of programmers and testers can only improve communication
about the quality of the product. Developers often need to observe the be-
havior of the application on the tester’s workstation if that behavior can’t be
reproduced in the development environment. Testers can sometimes sit
down with the developer to reproduce a problem more easily and quickly
than they can by trying to record the steps in a defect. This interaction re-
duces the time spent on non-oral communication.

Comments we’ve heard from testers on this subject include the following:

� “Being closer to the development of the product makes me a better
tester.”

� “Going to lunch with developers builds a better team, one that wants
and likes to work together.”

62 CHAPTER 4 � TEAM LOGISTICS

One major advantage of an integrated project team is that there’s only one
budget and one schedule. There is no “testing” time to cut if all of the func-
tionality is not finished. If there is no time to test a new feature, then there is
no time to develop it in the first place. The whole-team approach to taking
responsibility for quality is very powerful, as we point out throughout this
book.

I once joined an XP team that had been depending solely on unit-level testing and
had never had anyone in a tester role before. Their customer wasn’t all that happy
with the results, so they decided to hire a tester. While I attended daily stand-ups,
I wasn’t allowed to talk about testing tasks. Testing time wasn’t included in story
estimates, and testing tasks weren’t part of iteration planning. Stories were
marked “done” as soon as coding tasks were complete.

After the team missed the release date, which was planned for after three two-
week iterations, I asked the team’s coach to try the whole-team approach to test-
ing. Testing tasks went up on the board along with coding tasks. Stories were no
longer considered done until testing tasks were finished. Programmers took on
testing tasks, and I was a full participant in daily stand-ups. The team had no more
issues meeting the release plans they set.

—Lisa

Testers need to be full-fledged members of the development team, and test-
ing tasks need to be given the same attention as other tasks. Again, the
whole-team approach to testing goes a long way toward ensuring that testing
tasks are completed by the end of each iteration and release. Be sure to use
retrospectives to evaluate what testers need to integrate with their new agile
team and what skills they might need to acquire. For example, testers might
need more support from programmers, or from someone who’s an expert in
a particular type of testing.

A smart approach to planning the organizational changes for agile develop-
ment makes all the difference to a successful transition. Ask the QA and devel-
opment managers to figure out their own roles in the new agile organization.
Let them plan how they will help their testers and developers be productive on
the new agile teams. Provide training in agile practices that the team doesn’t
know. Make sure all of the teams can communicate with each other. Provide a
framework that lets each team learn as it goes, and the teams will find a way to
succeed.

Lisa’s Story

TEAM STRUCTURE 63

Transitioning QA and Engineering Teams—Case Study
Christophe Louvion is a CTO and agile coach for high-profile Internet compa-
nies. He told us about one experience he had while helping his company
implement agile development. As the agile coach, he wanted to truly imple-
ment agile development and avoid the common “small waterfall” mistake,
where the developers spend a week writing code and the testers spend the
next week testing it.

His company at the time was an organization of about 120 engineers, including
the internal IT departments. Before transitioning to Scrum, the company was
organized functionally. There were directors of QA and Engineering, and the
idea of product-based teams was hard for management to accept. The manag-
ers of these teams struggled with the following question: “What is my job
now?” Christophe turned this around on the managers and said: “You tell me.”

He worked with the Engineering and QA managers to help them figure out
what their jobs would be in the new agile environment. Only when they were
able to speak with one voice did they all go to the teams and explain their
findings.

In the new agile organization, managers deal with specific domain knowl-
edge, resources, prioritization, and problems that arise. The Engineering and
QA managers work hand-in-hand on a daily basis to resolve these types of
issues. Christophe and the two managers looked at what prevented testers
from being productive in the first week of the two-week iteration and taught
them how to help with design.

For the programmers, the question was “How do I make it so that the code is
easy to test?” The engineers weren’t trained in continuous integration,
because they were used to working in phased cycles. They needed lots of
training in test-driven design, continuous integration, and other practices.
Their managers ensured that they got this training.

Configuration management (CM) experts were brought in to help with the
build process. The CM team is separate from Engineering and QA at the com-
pany, and it provides the framework for everything in the build process,
including database objects, hardware, and configurations. Once the build
process framework was implemented, integrating coding and testing was
much easier to talk about.

Having management figure out their new roles first, and then getting a build
process framework in place with everything in source code control, were key
to the successful transition to agile. Another success factor was having repre-
sentatives from all teams—Engineering, QA, the CM, network, and the system
administrator groups and product teams—participate in daily stand-ups and
planning activities. This way, when testing issues came up, they could be
addressed by everyone who could help. As Christophe says, their approach
integrates everyone and puts a focus on testing.

See the bibliogra-
phy for a link to
some of Chris-
tophe’s writings
on managing
agile teams.

64 CHAPTER 4 � TEAM LOGISTICS

Agile Project Teams

Agile project teams are generally considered cross-functional, because each
team has members from many different backgrounds. The difference be-
tween a traditional cross-functional team and an agile team is the approach
to the whole-team effort. Members are not just “representing” their func-
tions in the team but are becoming true members of the team for as long as
the project or permanent team exists (see Figure 4-1).

Because projects vary in size, project teams might vary in structure. Organi-
zations with large projects or many projects that happen simultaneously are
having success using a matrix-type structure. People from different func-
tional areas combine to form a virtual team while still reporting back to their
individual organizational structures. In a large organization, a pool of testers
might move from project to project. Some specialists, such as security or per-
formance testers, might be shared among several teams. If you’re starting up
a project, identify all of the resources the project will need. Determine the
number of testers required and the skill set needed before you start. The
testers start with the team and keep working until the project is complete,
and at that time they go on to the next project.

While testers are part of the team, their day-to-day work is managed the
same as the rest of the project team’s work. A tester can bounce new ideas off
of the larger tester community, which includes testers on different project
teams across a large organization. All testers can share knowledge and ideas.
In organizations that practice performance reviews, the QA manager (if there
is one) might drive the reviews and get input from the project team.

Domain
Expert

Tester

Programmer

Agile Team

Testers

Business
Analysts

Programmers

Functional Teams

Figure 4-1 Traditional functional teams structure vs. agile team structure

PHYSICAL LOGISTICS 65

As with any new team, it takes a while for a team to jell. If the length of the
project is short and the teams are constantly changing, the organization
needs to be aware that the first iteration or two of every project will include
the new team members getting used to working with each other. Refactor
your organization as needed, and remember to include your customers. The
best teams are those that have learned to work together and have developed
trust with one another.

PHYSICAL LOGISTICS

Many organizations that are thinking of adopting agile try to create project
teams without co-locating the team in an open-plan environment. To sup-
port agile values and principles, teams work better when they have ready ac-
cess to all team members, easy visibility of all project progress charts, and an
environment that fosters communication.

Testers and customers sitting close to the programmers enable the necessary
communalization. If logistics prohibit co-location, teams can be inventive.

I worked in a team where space prevented all team members from sitting
together. The programmers had an area where they could pair-program with ease,
but the testers and the customer were seated in another area. At first, it was the
testers that made the trip to the storyboard area where the programmers sat to
participate in stand-ups and whenever they had a question for one of the pro-
grammers. Few of the programmers made the trip (about 50 feet) to the testers’
area. I started keeping a candy dish handy with treats and encouraged the devel-
opers to take some as often as they wanted. But there was one rule—they
needed to ask a question of one of the testers if they came for candy. Over time,
the walk got shorter for all team members. No one side was doing all of the walk-
ing, and communication flourished.

—Janet

Team size offers different types of challenges to the organization. Small teams
mean small areas, so it is usually easier to co-locate members. Large teams
might be spread globally, and virtual communication tools are needed. Co-
locating large teams usually means renovating existing space, which some or-
ganizations are reluctant to do. Understand your constraints, and try to find
solutions to the problems your team encounters rather than just accepting
things as “the way it is.”

Janet’s Story

66 CHAPTER 4 � TEAM LOGISTICS

One team I worked on started in one corner of the floor, but expanded over the
course of three years, gradually taking over 70% of the floor. Walls were taken
down, offices removed, and large open areas created. The open areas and pods
of teams worked well, but all the open space meant wall space was lost. Windows
became story boards and whiteboards, and rolling whiteboards were ordered
that could be used as teams needed them.

—Janet

Co-located teams don’t always live in a perfect world, and distributed teams
have a another set of challenges. Distributed teams need technology to help
them communicate and collaborate. Teleconferencing, video conferencing,
webcams, and instant messaging are some tools that can promote real-time
collaboration for teams in multiple locations.

Whether teams are co-located or distributed, the same questions usually
come up about what resources are needed on an agile team and how to ob-
tain them. We’ll discuss these in the next section.

RESOURCES

New agile team members and their managers have lots of questions about the
makeup of the team. Can we use the same testers that we had with our tradi-
tional projects, or do we need to hire a different type of tester? How many
testers will we need? Do we need people with other specialized skills? In this
section, we talk a little about these questions.

Tester-Developer Ratio

There have been many discussions about the “right” ratio of the number of
testers to the number of developers. This ratio has been used by organiza-
tions to determine how many testers are needed for a project so that they can
hire accordingly. As with traditional projects, there is no “right” ratio, and
each project needs to be evaluated on its own. The number of testers needed
will vary and depends upon the complexity of the application, the skill set of
the testers, and the tools used.

We have worked on teams with a tester-developer ratio of anywhere from
1:20 to 1:1. Here are a couple of our experiences.

Janet’s Story

RESOURCES 67

I worked on a project with a 1:10 ratio that developed a message-handling sys-
tem. There was very little GUI, and I manually tested that part of the application,
looking at usability and how well it matched the customer’s expectations. The pro-
grammers did all of the automated regression testing while I worked with them to
validate the effectiveness of the test cases written. I pair-tested stories with the
developers, including load testing specific stories.

I never felt that I didn’t have enough time to do the testing I needed to, because
the developers believed that quality was the whole team’s responsibility.

—Janet

I was once the only professional tester on a team of up to 20 programmers devel-
oping a content management system on an Internet shopping website. The team
began to get really productive when the programmers took on responsibility for
both manual testing and test automation. One or two programmers wore a “tester
hat” for each iteration, writing customer-facing tests ahead of coding and per-
forming manual tests. Additional programmers picked up the test automation
tasks during the iteration.

Conversely, my current team has had two testers for every three to five program-
mers. The web-based financial application we produce has highly complex busi-
ness logic, is high risk, and test intensive. Testing tasks often add up to the same
amount of time as programming tasks. Even with a relatively high tester–programmer
ratio, programmers do much of the functional test automation and sometimes
pick up manual testing tasks. Specialized testing tasks such as writing high-level
test cases and detailed customer-facing tests are usually done by the testers.

—Lisa

Rather than focus on a ratio, teams should evaluate the testing skills they
need and find the appropriate resources. A team that takes responsibility for
testing can continually evaluate whether it has the expertise and bandwidth it
needs. Use retrospectives to identify whether there’s a problem that hiring
more testers would solve.

Hiring an Agile Tester

As we discussed in Chapter 2, “Ten Principles for Agile Testers,” there are cer-
tain qualities that make a tester suited to working on an agile team. We don’t
want to go into a lot of detail about what kind of tester to hire, because every
team’s need is different. However, we do believe that attitude is an important
factor. Here’s a story of how Lisa’s team struggled to hire a new agile tester.

Janet’s Story

Lisa’s Story

68 CHAPTER 4 � TEAM LOGISTICS

Our first attempt at recruiting another tester was not very successful. The first job
posting elicited many responses, and we interviewed three candidates without
finding a good fit. The programmers wanted someone “techie,” but we also
needed someone with the skills to collaborate with business people and help
them to produce examples and requirements. We struggled to determine the con-
tent of the job posting in order to attract candidates with the right attitude and
mind-set.

After soliciting opinions and suggestions from Janet and other colleagues in the
agile testing community, we decided to look for a tester with the mind-set that is
described in Chapter 2. We changed the job posting to include items such as
these:

• Experience writing black box and GUI test cases, designing tests to mitigate
risks, and helping business experts define requirements

• Experience writing simple SQL queries and insert/update statements and basic
grasp of Oracle or another relational database

• At least one year of experience with some scripting or programming language
and/or open source test tools

• Ability to use basic Unix commands

• Experience collaborating with programmers and business experts

• Experience in context-based, exploratory, or scenario testing a plus

• Ability to work as part of a self-organizing team in which you determine your
tasks on a daily basis in coordination with coworkers rather than waiting for
work to be assigned to you

These requirements brought candidates more suited to an agile testing job. I pro-
ceeded carefully with screening, ruling out people with a “quality police” mental-
ity. Testers who pursued professional development and showed interest in agile
development were more likely to have the right mind-set. The team needed
someone who would be strong in the area of test tools and automation, so a pas-
sion for learning was paramount.

This more creative approach to recruiting a tester paid off. At that time, it wasn’t
easy to find good “agile tester” candidates, but subsequent searches went more
smoothly. We found that posting the tester position in less obvious places, such as
a Ruby mailing list or the local agile user group, helped reach a wider range of suit-
able candidates.

Hiring an agile tester taught me a lot about the agile testing mind-set. There are
testers with very good skill sets who would be valuable to any traditional test
team but would not be a good fit on an agile team because of their attitude
toward testing.

—Lisa

Lisa’s Story

BUILDING A TEAM 69

We need to consider more than just the roles that testers and programmers
perform on the team. No matter what role you’re trying to fill, the most im-
portant consideration is how that person will fit on your team. With the agile
whole-team approach, specialists on the team might be asked to step outside
their areas of expertise and pitch in on other activities. Each team member
needs to have a strong focus on quality and delivering business value. Con-
sider more than just technical skills when you’re expanding your team.

BUILDING A TEAM

We’ve talked a lot about the whole-team approach. But changes like that
don’t just happen. We get asked questions like, “How do we get the team to
jell?” or “How do we promote the whole-team approach?” One of the big
ones is: “How do we keep everyone motivated and focused on the goal of de-
livering business value?”

Self-Organizing Team

In our experience, teams make the best progress when they’re empowered to
identify and solve their own problems. If you’re a manager, resist the tempta-
tion to impose all your good ideas on the team. There are problems, such as
personnel issues, that are best solved by managers, and there are times a
coach needs to provide strong encouragement and lead the team when it
needs leadership. It takes time for a new agile team to learn how to prioritize
and solve its problems, but it’s okay for the team to make mistakes and stum-
ble a few times. We think a high-functioning team has to grow itself. If you’re
a tester, you’re in a good position to help the team figure out ways to get fast
feedback, use practices such as retrospectives to prioritize and address issues,
and find the techniques that help your team produce better software.

Involving Other Teams

You might need to get other teams on board to help your team succeed. Set
up meetings; find ways to communicate as much as possible. Use a Scrum of
Scrums to keep multiple teams coordinated, or just get involved with the
other teams. If you have to bring in an expert to help with security testing,
pair with that expert and learn as much as you can, and help them learn
about your project.

If teams are scattered in different locations and time zones, figure out how to
get as much direct communication as possible. Maybe representatives from

70 CHAPTER 4 � TEAM LOGISTICS

each team can adjust their hours once or twice a week so that they can tele-
conference once a week. Make a phone call instead of sending an email
whenever possible. Lisa’s team adjusted its planning meeting times to include
a remote team member who works late at night. They schedule meetings for
a time where his day overlaps with the rest of the team’s day.

Every Team Member Has Equal Value

Every team member has equal value to the team. If testers or any other team
members feel left out or less valued, the whole-team approach is doomed.
Make sure testers are invited to all meetings. If you’re a tester and someone
forgets to invite you to a meeting, invite yourself. Nontechnical testers might
think they’ll be out of place or overwhelmed at a design meeting, but some-
times they ask good questions that the techies didn’t think of.

Testers have a right to ask for and get help. If you’re a tester stuck on an auto-
mation problem, have the courage to ask a team member for help. That per-
son might be busy right now, but he or she must commit to helping you in a
reasonable amount of time. If you’re a manager or leader on your team, make
sure this is happening, and raise the issue to the team if it’s not.

Performance and Rewards

Measuring and rating performance on an individual basis risks undermining
team collaboration. We don’t want a programmer to feel she shouldn’t take
on a testing task because she’s rated on delivering production code. We don’t
want a system administrator to be so busy making sure her individual goals
are met that she can’t help with a test environment problem.

Conversely, a good performer who was trying to work well with the team
shouldn’t be knocked because the rest of the team didn’t pull together. This is
a time when a manager needs to step up and help the team find its way. If
major bugs made it to production, nobody should blame the testers. Instead,
the whole team should analyze what happened and start taking steps to pre-
vent a recurrence.

The development team needs to keep the business needs in mind. Set goals
that serve the business, increase profitability, and make the customers hap-
pier. Work closely with the business so that your successes help the whole
company succeed.

Chapter 9, “Tool-
kit for Business-
Facing Tests that
Support the
Team,” gives exam-
ples of tools that
help remote teams
collaborate.

SUMMARY 71

As we mentioned in Chapter 3, “Cultural Challenges,” celebrate every suc-
cess, however small. A celebration might be a high-five, a company-provided
lunch, or maybe just leaving work early to socialize a bit. The ScrumMaster
on Lisa’s team hands out gold stars at stand-up meetings for special accom-
plishments. Acknowledge the people who help you and your team.

Teams can find novel ways to recognize each other’s contributions. Iteration
review and demonstration meetings, where both the development team and
customer team are present, are a good setting for recognizing both individual
and team achievements.

What Can You Do?

If you’re a new tester on an agile team, especially a new agile team, what can
you do to help the team overcome organizational challenges and succeed?
How can you fit in with the team and contribute your particular skills and
experience?

Put the ten principles we described in Chapter 2 to work. Courage is espe-
cially important. Get up and go talk to people; ask how you can help. Reach
out to team members and other teams with direct communication. Notice
impediments and ask the team to help remove them.

Agile development works because it gets obstacles out of our path and lets us do
our best work. We can feel proud and satisfied, individually and as a team.
When we follow agile principles, we collaborate well, use feedback to help im-
prove how we work, and always look for new and better ways to accomplish our
goals. All this means we can continually improve the quality of our product.

SUMMARY

In this chapter, we looked at ways to build a team and a structure for success-
ful agile testing and development.

� Consider the importance of team structure; while testers might need
an independent mind-set, putting them on a separate team can be
counterproductive.

� Testers need access to a larger community of testers for learning and
trying out new ideas. QA teams might be able to create this commu-
nity within their organization.

Read about the
“Shout-Out Shoe-
box” idea in Chap-
ter 19, “Wrap Up
the Iteration.”

72 CHAPTER 4 � TEAM LOGISTICS

� It is important for the whole team to be located together, to foster
collaboration; if the team is distributed, provide tools to promote
communication.

� Hire for attitude.
� There is no right tester–developer ratio. The right answer is, “It de-

pends on your situation.”
� Teams need to self-organize, identify and find solutions to their own

problems, and look for ways to improve. They can’t wait for someone
to tell them what to do.

� Management should reward performance in a way that promotes the
team’s effort to deliver business value but not penalize good individ-
ual performance if the team is struggling.

� Testers can use agile principles to improve their own skills and in-
crease their value to the team. They need to be proactive and find
ways that they can contribute.

73

Chapter 5

TRANSITIONING
TYPICAL PROCESSES

There are many processes in a traditional project that don’t transition well to
agile because they require heavyweight documentation or are an inherent part
of the phased and gated process and require sign-offs at the end of each stage.

Like anything else, there are no hard and fast rules for transitioning your
processes to a more agile or lightweight process. In this chapter, we discuss a few
of those processes, and give you alternatives and guidance on how to work with
them in an agile project. You’ll find more examples and details about these alter-
natives in Parts III, IV, and V.

SEEKING LIGHTWEIGHT PROCESSES

When teams are learning how to use agile processes, some of the more tradi-
tional processes can be lost in the shuffle. Most testers who are used to working

Transitioning Typical
Processes

Test Planning

Defect Tracking

Seeking Lightweight Processes

Metrics

Existing
Processes

Lean Measurements

Why Do We Need Metrics?

What Not to Do with Metrics

Communicating

Metrics ROI

Why Use a DTS?

Why Not?

Defect Tracking Tools

Test Strategy vs. Test Plan

Traceability

Audits

Frameworks, Models, and Standards

74 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

with traditional phased and gated development methodologies are accustomed
to producing and using metrics, recording defects in a formal defect tracking
system, and writing detailed test plans. Where do those fit in agile development?

Many software organizations must comply with audit systems or quality pro-
cess models. Those requirements don’t usually disappear just because you
start using agile development practices. In fact, some people worry that agile
development will be incompatible with such models and standards as CMMI
and ISO 9000.

It might be more fun to talk about everything that’s new and different when
testing on an agile project, but we still need ways to measure progress, track de-
fects, and plan testing. We also need to be prepared to work with our organiza-
tion’s quality models. The key is to keep these processes lightweight enough to
help us deliver value in a timely manner. Let’s start by looking at metrics.

METRICS

Metrics can be controversial, and we spend a lot of time talking about them.
Metrics can be a pit of wasted effort, numbers for the sake of numbers. They
are sometimes used in harmful ways, although they don’t have to be bad.
They can guide your team and help it to measure your team’s progress to-
ward its goals. Let’s take a look at how to use metrics to help agile testers and
their teams.

Lean Measurements

Lean software development practitioners look for ways to reduce the number
of measurements and find measurements that will drive the right behaviors.
Implementing Lean Software Development: From Concept to Cash, by Mary
and Tom Poppendieck, is an excellent resource that teaches how to apply lean
initiatives to your testing and development efforts.

According to the Poppendiecks [2007], a fundamental lean measurement is
the time it takes to go “from concept to cash,” from a customer’s feature re-
quest to delivered software. They call this measurement “cycle time.” The fo-
cus is on the team’s ability to “repeatedly and reliably” deliver new business
value. Then the team tries to continuously improve their process and reduce
the cycle time.

Measurements such as cycle time that involve the whole team are more likely
to drive you toward success than are measures confined to isolated roles or

METRICS 75

groups. How long does it usually take to fix a defect? What can the team do to
reduce that latency, the amount of time it takes? These types of metrics en-
courage collaboration in order to make improvements.

Another lean measurement the Poppendiecks explain in their book is finan-
cial return. If the team is developing a profitable product, it needs to under-
stand how it can work to achieve the most profit. Even if the team is
developing internal software or some other product whose main goal isn’t
profit, it still needs to look at ROI to make sure it is delivering the best value.
Identify the business goals and find ways to measure what the team delivers.
Is the company trying to attract new customers? Keep track of how many
new accounts sign on as new features are released.

Lean development looks for ways to delight customers, which ought to be the
goal for all software development. The Poppendiecks give examples of simple
ways you can measure whether your customers are delighted.

We like the lean metrics, because they’re congruent with our goal to deliver
business value. Why are we interested in metrics at all? We’ll go into that in
the next section.

Why We Need Metrics

There are good reasons to collect and track metrics. There are some really
bad ones too. Anyone can use good metrics in terrible ways, such as using
them as the basis for an individual team member’s performance evaluation.
However, without metrics, how do you measure your progress?

When metrics are used as guideposts—telling the team when it’s getting off
track or providing feedback that it’s on the right track—they’re worth gath-
ering. Is our number of unit tests going up every day? Why did the code cov-
erage take a dive from 75% to 65%? It might have been a good reason—
maybe we got rid of unused code that was covered by tests. Metrics can alert
us to problems, but in isolation they don’t usually provide value.

Metrics that measure milestones along a journey to achieve team goals are
useful. If our goal is to increase unit test code coverage by 3%, we might run
the code coverage every time we check in to make sure we didn’t slack on
unit tests. If we don’t achieve the desired improvement, it’s more important
to figure out why than to lament whatever amount our bonus was reduced as
a result. Rather than focus on individual measurements, we should focus on
the goal and the trending toward reaching that goal.

76 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

Metrics help the team, customers included, to track progress within the iter-
ation and within the release or epic. If we’re using a burndown chart, and
we’re burning up instead of down, that’s a red flag to stop, take a look at
what’s happening, and make sure we understand and address the problems.
Maybe the team lacked important information about a story. Metrics, in-
cluding burndown charts, shouldn’t be used as a form of punishment or
source of blame. For example, questions like “Why were your estimates too
low?” or “Why can’t you finish all of the stories?” would be better coming
from the team and phrased as “Why were our estimates so low?” and “Why
didn’t we get our stories finished?”

Metrics, used properly, can be motivating for a team. Lisa’s team tracks the
number of unit tests run in each build. Big milestones—100 tests, 1000 tests,
3000 tests—are a reason to celebrate. Having that number of unit tests go up
every day is a nice bit of feedback for the development and customer teams.
However, it is important to recognize that the number itself means nothing.
For example, the tests might be poorly written, or to have a well tested prod-
uct, maybe we need 10,000 tests. Numbers don’t work in isolation.

Pierre Veragen told me about a team he worked on that was allergic to metrics.
The team members decided to stop measuring how much code their tests cov-
ered. When they decided to measure again after six months, they were stunned to
discover the rate had dropped from 40% to 12%.

How much is it costing you to not use the right metrics?

—Lisa

When you’re trying to figure out what to measure, first understand what
problem you are trying to solve. When you know the problem statement, you
can set a goal. These goals need to be measurable. “Reduce average response
time on the XYZ application to 1.5 seconds with 20 concurrent users” works
better than “Improve the XYZ application performance.” If your goals are
measurable, the measurements you need to gather to track the metrics will
be obvious.

Remember to use metrics as a motivating force and not for beating down a
team’s morale. This wisdom bears repeating: Focus on the goal, not the met-
rics. Maybe you’re not using the right metrics to measure whether you’re
achieving your team’s objectives, or perhaps you’re not interpreting them in
context. An increased number of defect reports might mean the team is do-
ing a better job of testing, not that they are writing more buggy code. If your

Lisa’s Story

METRICS 77

metrics aren’t helping you to understand your progress toward your goal,
you might have the wrong metrics.

What Not to Do with Metrics

Mark Twain popularized the saying, which he attributed to Benjamin Dis-
raeli, “There are three kinds of lies: lies, damned lies, and statistics.” Measur-
able goals are a good thing; if you can’t gauge them in some way, you can’t tell
if you achieved them. On the other hand, using metrics to judge individual
or team performance is dangerous. Statistics by themselves can be twisted
into any interpretation and used in detrimental ways.

Take lines of code, a traditional software measuring stick. Are more lines of
code a good thing, meaning the team has been productive, or a bad thing,
meaning the team is writing inefficient spaghetti-style code?

What about number of defects found? Does it make any sense to judge testers
by the number of defects they found? How does that help them do their jobs
better? Is it safe to say that a development team that produces a higher num-
ber of defects per lines of code is doing a bad job? Or that a team that finds
more defects is doing a good job? Even if that thought holds up, how moti-
vating is it for a team to be whacked over the head with numbers? Will that
make the team members start writing defect-free code?

Communicating Metrics

We know that whatever we measure is bound to change. How many tests are
running and passing? How many days until we need a “build on the shelf”? Is
the full build passing? Metrics we can’t see and easily interpret aren’t worth
having. If you want to track the number of passing tests, make sure that met-
ric is visible in the right way, to the right people. Big visible charts are the
most effective way of displaying metrics we know.

My previous team had goals concerned with the number of unit tests. However,
the number of unit tests passing wasn’t communicated to anyone; there were no
big visible charts or build emails that referred to that number. Interestingly, the
team never got traction on automating unit tests.

At my current company, everyone in the company regularly gets a report of the
number of passing tests at the unit, behind-the-GUI, and GUI levels (see Tables 5-1
and 5-2 for examples). Business people do notice when that number goes down
instead of up. Over time, the team has grown a huge number of useful tests.

—Lisa

Lisa’s Story

78 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

Are your metrics worth the trouble? Don’t measure for the sake of producing
numbers. Think about what you’ll learn from those numbers. In the next
section, we consider the return on investment you can expect from metrics.

Metrics ROI

When you identify the metrics you need, make sure you can obtain them at a
reasonable cost. If your continual build delivers useful numbers, it delivers
good value. You’re running the build anyway, and if it gives us extra informa-
tion, that’s gravy. If you need a lot of extra work to get information, ask your-
self if it’s worth the trouble.

Lisa’s team went to a fair amount of trouble to track actual time spent per
story versus estimated time. What did they learn other than the obvious fact

Table 5-1 Starting and Ending Metrics

Metric At Start At End

NCSS – Whitney 69943 69887

NCSS – Ghidrah 41044 41978

Number of JUnit tests 3001 3062

Number of Canoo/Watir assertions 3215 3215

Number of FitNesse assertions 57319 61585

Table 5-2 Daily Build Results

Date Build Result

Friday 1/25/2008 Passed 3026 JUnits

Monday 1/28/2008 Passed 3026 JUnits

Tuesday 1/29/2008 Passed 3027 JUnits

Wednesday 1/30/2008 Passed 3033 JUnits

Thursday 1/31/2008 Passed 3040 JUnits

Friday 2/1/2008 Passed 3058 JUnits

Monday 2/4/2008 Passed 3059 JUnits

Tuesday 2/5/2008 Passed 3060 JUnits

Wednesday 2/6/2008 Passed 3062 JUnits

Thursday 2/7/2008 Passed 3062 JUnits

DEFECT TRACKING 79

that estimates are just that? Not much. Some experienced teams find they
can dispense with the sprint burndown chart because the task board gives
them enough information to gauge their progress. They can use the time
spent estimating tasks and calculating the remaining hours on more pro-
ductive activities.

This doesn’t mean we recommend that you stop tracking these measure-
ments. New teams need to understand their velocity and burndown rate, so
that they can steadily improve.

Defect rates are traditional software metrics, and they might not have much
value on a team that’s aiming for zero defects. There’s not much value in
knowing the rate of bugs found and fixed during development, because find-
ing and fixing them is an integral part of development. If a tester shows a de-
fect to the programmer who’s working on the code, and a unit test is written
and the bug is fixed right away, there’s often no need to log a defect. On the
other hand, if many defects reach production undetected, there can be value
in tracking the number to know if the team improves.

When it started to rewrite its buggy legacy application, Lisa’s team set a goal
of no more than six high-severity bugs in new code reported after the code is
in production over a six-month period. Having a target that was straightfor-
ward and easy to track helped motivate the team to find ways to head bugs
off during development and exceed this objective.

Figure each metric’s return on investment and decide whether to track or
maintain it. Does the effort spent collecting it justify the value it delivers?
Can it be easily communicated and understood? As always, do what works
for your situation. Experiment with keeping a particular metric for a few
sprints and evaluate whether it’s paying off.

One common metric that relates to software quality is the defect rate. In the
next section, we look at reasons to track defects, or to not track defects, and
what we can learn from them.

DEFECT TRACKING

One of the questions that are asked by every new agile team is, “Do we still
track bugs in a defect tracking system?” There’s no simple answer, but we’ll
give you our opinion on the matter and offer some alternatives so that you
can determine what fits your team.

80 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

Why Should We Use a Defect Tracking System (DTS)?

A lot of us testers have used defect tracking as the only way to communicate
the issues we saw, and it’s easy to keep using the tools we are familiar with. A
DTS is a convenient place to keep track of not only the defect but the priori-
ties, severities, and status, and to see who it is assigned to. Many agile practi-
tioners say that we don’t need to do this anymore, that we can track defects
on cards or some other simple mechanism. We could write a test to show the
failure, fix the code, and keep the test in our regression suite.

However, there are reasons to keep using a tool to record defects and how
they were fixed. Let’s explore some of them now.

Convenience

One of the concerns about not keeping a defect tracking system is that there is
no place to keep all of the details of the bug. Testers are used to recording a
bug with lots of information, such as how to reproduce it, what environment
it was found in, or what operating system or browser was used. All of this in-
formation cannot fit on a card, so how do you capture those details? If you are
relying only on cards, you also need conversation. But with conversation, de-
tails get lost, and sometimes a tester forgets exactly what was done—especially
if the bug was found a few days prior to the programmer tackling the issue.

A DTS is also a convenient place to keep all supplemental documentation,
such as screen prints or uploaded files.

Knowledge Base

We have heard reasons to track defects such as, “We need to be able to look at
old bug reports.” We tried to think of reasons why you would ever need to
look at old bug reports, and as we were working on this chapter, Janet found
an example.

When I was testing the pre-seating algorithm at WestJet, I found an anomaly. I
asked Sandra, another tester, if she had ever come across the issue before. San-
dra vaguely recalled something about it but not exactly what the circumstances
were. She quickly did a search in Bugzilla and found the issue right away. It had
been closed as invalid because the business had decided that it wasn’t worth the
time it would take to fix it, and the impact was low.

Being able to look it up saved me from running around trying to ask questions or
reentering the bug and getting it closed again. Because the team members sit

Janet’s Story

DEFECT TRACKING 81

close to each other, our talking led to another conversation with the business
analyst on the team. This conversation sparked the idea of a FAQ page, an out-
standing issues list, or something along that line that would provide new testers a
place to find all of the issues that had been identified but for which the decision
had been made not to address them.

—Janet

This story shows that although the bug database can be used as a knowledge
base, there might be other mechanisms for keeping business decisions and their
background information. If an issue is old enough to have been lost track of,
maybe we should rewrite it and bring it up again. The circumstances may have
changed, and the business might decide it is now worthwhile to fix the bug.

The types of bugs that are handy to keep in a DTS are the ones that are inter-
mittent and take a long time to track down. These bugs present themselves
infrequently, and there are usually gaps in time during which the investiga-
tion stalls for lack of information. A DTS is a place where information can be
captured about what was figured out so far. It can also contain logs, traces,
and so on. This can be valuable information when someone on the team fi-
nally has time to look at the problem or the issue becomes more critical.

The information in bug reports can be used later for several purposes. Here’s
a story from Lisa’s team on how it uses its information.

One developer from our team serves on a “production support” rotation for each
iteration. Production support requests come in from the business side for manual
fixes of past mistakes or production problems that need manual intervention. The
“production support person” researches the problem and notes whatever was
done to fix it in the bug report. These notes usually include a SQL statement and
information about the cause. If anyone encounters the same error or situation
later, the solution can be easily found in the DTS. If certain types of problems seem
to occur frequently, the team can use the DTS for research and analysis. Even
though our team is small, we deal with a lot of legacy code, and we can’t rely on
people’s memory to keep track of every problem and fix.

—Lisa

Remembering the cause of defects or what was done to fulfill a special re-
quest is even harder when the team is particularly large or isn’t co-located.
Customers might also be interested in the solutions to their problems.

Lisa’s Story

82 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

Large or Distributed Teams

If projects are so large that defects found by one team might affect other
teams, a DTS is probably a good choice. Of course, to be useful it needs to be
accessible to all members of the team. Face-to-face communication is always
our first choice, but when circumstances make that impractical, we need aids
such as a DTS.

Customer Support

When there are defects that have been reported by the customer after the re-
lease, the customer usually wants to know when they’ve been fixed. It’s in-
valuable for the help desk or technical support to know what was fixed in a
given release. They can also find defects that are still outstanding at release
time and let the customers know. A DTS makes it much simpler to pull this
information together.

Metrics

There are reasons to track defect rates. There are also reasons why you wouldn’t
track a defect. For example, we don’t think that a bug should be counted as a
defect if it never makes it out of the iteration. This, of course, brings up another
discussion about what should we track and why, but we won’t discuss that here.

Traceability

Another reason we’ve heard for having a DTS is traceability, linking defects
to test cases. We’re not sure that this is a valid reason. Not all defects are
linked to test cases, nor should they be. For example, errors like spelling mis-
takes might not need specific test cases. Maybe the product was not intuitive
to use; this is a very real bug that often goes unreported. How do you write a
test to determine if something is usable? Exploratory testing might find bugs
in edge conditions that are not worth the effort of creating automated tests.

If it is an automated test case that caught a bug, then the need to record that
defect is further reduced, because it will be caught again if ever reintroduced.
The need for traceability is gone. So, maybe we don’t need to track defects.

Why Shouldn’t We Use a DTS?

Agile and Lean provide us with practices and principles that help reduce the
need for a DTS. If the process is solid, and all of the people are committed to
delivering a quality product, defects should be rare and very simply tracked.

Chapter 18, “Cod-
ing and Testing,”
explores metrics
related to defect
rates.

DEFECT TRACKING 83

As a Communication Tool

Defect tracking systems certainly don’t promote communication between
programmers and testers. They can make it easy to avoid talking directly to
each other.

Waste of Time and Inventory

We tend to put lots of information into the DTS in addition to all of the steps
to reproduce the defect. Depending on the bug, it can take a long time to
write these steps so that the programmer can reproduce it as well. Then there
is the triage, and someone has to make comments, interpret the defect, at-
tempt to reproduce it, (ideally) fix it, write more comments, and assign it
back to the person who reported it. Finally, the fix can be verified. This whole
cycle can double if the programmer misunderstood the problem in the first
place. The cost of a single defect report can become exorbitant.

How much easier would it be if we as testers could just talk to the program-
mer and show what we found, with the developer then fixing the defect right
away? We’ll talk more about that later.

Defects in a DTS become a queue or a mini product backlog. According to
lean principles, this inventory of defects is a waste. As a team, we should be
thinking of ways to reduce this waste.

In 2004, Antony Marcano, author of TestingReflections.com, wrote a blog post
about the idea of not using a bug-tracking system. When it was discussed on mail-
ing lists, he was flamed by many testers as introducing something similar to heresy.
He finds he has a different reception now, because the idea is making its way into
the mainstream of agile thinking.

He suggests that bug-tracking systems in agile teams are just “secret backlogs.”

—Janet

Defect Tracking Tools

If you do decide to use a DTS, choose it carefully. Understand your needs and
keep it simple. You will want everyone on the team to use it. If it becomes
overhead or hard to use, people will find ways to work around it. As with all
tools used by your agile development team, you should consider the whole
team’s opinion. If anyone from the customer team enters bug reports, get his
or her opinion too.

In Chapter 15,
“Coding and Test-
ing,” we’ll explain
how tester and
programmers work
together on bugs.

Janet’s Story

Antony will share
his ideas about
the hidden back-
log when we
cover iteration
planning in Chap-
ter 18, “Coding
and Testing.”

84 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

One of the simplest tools that Janet has used is Alcea’s FIT IssueTrack. It is
configurable, does not make you follow a predefined process, and is easy to
get metrics out of. Do your homework and find the tool that works for you.
There are a variety of open source defect-tracking systems, hosted systems,
and integrated enterprise systems available.

Whether or not you use a DTS, you want to make defects as visible as possible.

We use a commercial DTS, but we find value in keeping bugs visible. We color-code
bugs and include them as tasks in our story board, shown in Figure 5-1. Yellow
cards denote normal bugs, and red cards denote either high production bugs or
“test stopper” development bugs—both categories need to be addressed right
away. A quick look at the board lets us see how many bugs are in the To Do, WIP,
Verify and Done columns. Other cards are color-coded as well: blue for story cards,
green for test task cards, and white for development tasks. Striped cards are for
tasks added after iteration planning. Yellow and red bug cards stand out easily.

During the time we were writing this book, my team converted to a virtual story
board because one of our team members became a remote team member, but
we retained this color-coding concept.

—Lisa

Figure 5-1 Story board with color-coded cards

DEFECT TRACKING 85

We usually recommend experimenting with different tools, using each one
for a few iterations, but this is trickier with bug-tracking systems, because
you need to port all of the bugs that are in one system to the new one that
you’re trying on for size. Spend some time thinking about what you need in a
DTS, what purposes it will serve, and evaluate alternatives judiciously.

My team used a web-based DTS that was basically imposed upon it by manage-
ment. We found it somewhat cumbersome to use, lacking in basic features such as
time-stamping updates to the bug reports, and we chafed at the license restric-
tions. We testers were especially frustrated by the fact that our license limited us
to three concurrent users, so sessions were set to time out quickly.

The team set aside time to evaluate different DTS alternatives. At first, the selec-
tion seemed mind-boggling. However, we couldn’t find one tool that met all our
requirements. Every tool seemed to be missing something important, or we heard
negative reports from people who had used the tool. We were concerned about
the effort needed to convert the existing bug database into a new system.

The issue was forced when our DTS actually crashed. We had stopped paying for
support a couple of years earlier, but the system administrator decided to see
what enhancements the vendor had made in the tool. He found that a lot of
shortcomings we had experienced had been addressed. For example, all updates
were now time stamped. A client application was available that wasn’t subject to
session timeouts and had enhanced features that were particularly valuable to the
testers.

By going with our existing tool and paying for the upgrade and maintenance, plus
a license allowing more concurrent users, we got help with converting our existing
data to the new version and got a working system easily and at a low cost. A
bonus was that our customers weren’t faced with having to learn a new system.

Sometimes the best tool is the one you already have if you just look to see how it
has improved!

—Lisa

As with all your tool searches, look to others in your community, such as user
groups and mailing lists, for recommendations. Define your criteria before
you start looking, and experiment as much as you can. If you choose the
wrong tool, cut your losses and start researching alternatives.

Keep Your Focus

Decisions about reporting and tracking defects are important, but don’t lose
track of your main target. You want to deliver the best quality product you can,
and you want to deliver value to the business in a timely manner. Projects

Lisa’s Story

86 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

succeed when people are allowed to do their best work. Concentrate on im-
proving communication and building collaboration. If you encounter a lot of
defects, investigate the source of the problem. If you need a DTS to do that, use
it. If your team works better by documenting defects in executable tests and
fixing them right away, do that. If some combination enables you continually
improve, go with it. The main thing to remember is that it has to work for your
whole team.

Defect tracking is one of the typical quality processes that generate the most
questions and controversy in agile testing. Another big source of confusion is
whether agile projects need documents such as test plans or traceability ma-
trices. Let’s consider that next.

TEST PLANNING

Traditional phased software methodologies stress the importance of test
plans as part of the overall documentation needs. They’re intended to outline
the objectives, scope, approach, and focus of the software testing effort for
stakeholders. The completed document is intended to help people outside
the test group understand the “why” and “how” of product validation. In this
section, we look at test plans and other aspects of preparing and tracking the
testing effort for an agile project.

Test Strategy vs. Test Planning

In an agile project, teams don’t rely on heavy documentation to communi-
cate what the testers need to do. Testers work hand in hand with the rest of
the team so that the testing efforts are visible to all in the form of task cards.
So the question often put to us is, “Is there still a need for test plans?” To an-
swer that question, let’s first take a look at the difference between a test plan
and a test strategy or approach.

The more information that is contained in a document, the less likely it is that
someone is going to read it all. Consider what information is really necessary
for the stakeholders. Think about how often it is used and what it is used for.

We like to think of a test strategy as a static document that seldom changes,
while a test plan is created new and is specific to each new project.

Test Strategy

A strategy is a long-term plan of action, the key word being “long-term.” If
your organization wants documentation about your overall test approach to

Chapter 18, “Cod-
ing and Testing,”
covers alterna-
tives and shows
you different ways
to attack your bug
problems.

TEST PLANNING 87

projects, consider taking this information and putting it in a static document
that doesn’t change much over time. There is a lot of information that is not
project specific and can be extracted into a Test Strategy or Test Approach
document.

This document can then be used as a reference and needs to be updated only
if processes change. A test strategy document can be used to give new em-
ployees a high-level understanding of how your test processes work.

I have had success with this approach at several organizations. Processes that
were common to all projects were captured into one document. Using this format
answered most compliance requirements. Some of the topics that were covered
were:

• Testing Practices
• Story Testing
• Solution Verification Testing
• User Acceptance Testing
• Exploratory Testing
• Load and Performance Testing
• Test Automation
• Test Results
• Defect Tracking Process
• Test Tools
• Test Environments

—Janet

Test Plan

The power of planning is to identify possible issues and dependencies, to bring
risks to the surface to be talked about and to be addressed, and to think about
the big picture. Test planning is no different. A team should think about risks
and dependencies and the big picture for each project before it starts.

Whether your team decides to create a test plan document or not, the plan-
ning should be done. Each project is different, so don’t expect that the same
solution will fit all.

Sometimes our customers insist on a test plan document. If you’re contract-
ing to develop an application, a test plan might be part of a set of deliver-
ables that also include items such as a requirements document and a design
document.

Janet’s Story

In Chapter 15,
“Tester Activities in
Release or Theme
Planning,” we
show examples
and discuss alter-
natives you can use
when you are plan-
ning the release.

88 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

Talk of test plans often leads to talk of traceability. Did someone execute all
planned testing of the desired behavior on the delivered code? How do re-
quirements and test plans relate to the actual testing and final functionality?

Traceability

In traditional projects, we used to need traceability matrices to determine
whether we had actually tested all of the requirements. If a requirement
changed, we needed to know that we had changed the appropriate test cases.
With very large requirements documents, this was the only way that a test
team knew it had good coverage.

In an agile project, we don’t have those restrictions. We build functionality in
tiny, well-defined steps. We work with the team closely and know when
something changes. If the programmers work test-first, we know there are
unit tests for all of the small chunks of work. We can then collaborate with
the customer to define acceptance tests. We test each story as the program-
mer works on it, so we know that nothing goes untested.

There might be requirements for some kind of traceability for regulated in-
dustries. If there is, we suggest that you really look at what problem manage-
ment is trying to solve. When you understand what is needed, you should try
to make the solution as simple as possible. There are multiple ways to pro-
vide traceability. Source code check-in comments can refer to the wiki page
containing the requirements or test cases, or to a defect number. You can put
comments in unit tests tying the test to the location or identifier of the re-
quirement. The tests can be integrated directly with the requirements in a
tool such as FitNesse. Your team can easily find the way that works best for
your customers’ needs.

Documents such as traceability matrices might be needed to fulfill require-
ments imposed by the organization’s audit standards or quality models. Let’s
consider how these directives get along with agile development.

EXISTING PROCESSES AND MODELS

This question is often asked: “Can traditional quality models and processes
coexist with agile development methods?” In theory, there is no reason why
they can’t. In reality, there is often not a choice. Quality models often fall into

EXISTING PROCESSES AND MODELS 89

the domain of the traditional QA team, and they can follow testers into the
new agile structure as well. It might not be easy to fit these into a new agile
development model. Let’s look at a few typical quality processes and how
testers and their teams might accommodate them.

Audits

Different industries have different audit requirements. Quality assurance
teams in traditional development organizations are often tasked with provid-
ing information for auditors and ensuring compliance with audit require-
ments. The Sarbanes-Oxley Act of 2002, enacted in response to high-profile
corporate financial scandals, sets out requirements for maintaining business
records. Ensuring compliance usually falls to the IT departments. SAS 70 is
another widely recognized auditing standard for service organizations. These
are just a couple of examples of the type of audit controls that affect develop-
ment teams.

Larger organizations have specialized teams that control compliance and
work with auditors, but development teams are often asked to provide infor-
mation. Examples include what testing has been performed on a given soft-
ware release, or proving that different accounts reconcile. Testers can be tasked
with writing test plans to evaluate the effectiveness of control activities.

Our company undergoes regular SAS 70 audits. Whenever one is scheduled, we
write a story card for providing support for the audit. Most of this work falls to the
system administrators, but I provide support to the business people who work
with the auditor. Sometimes we’re required to demonstrate system functionality in
our demo environment. I can provide data for the demos and help if questions
arise. I might also be asked to provide details about how we tested a particular
piece of functionality.

Some of our internal processes are required to conform with SAS 70 require-
ments. For example, every time we release to production, we fill out a form with
information about which build was released, how many tests at each level were
run on it, who did the release, and who verified it.

—Lisa

Testers who are part of an agile team should be dedicated to that team. If
their help is needed in providing information for an audit or helping to ensure

Lisa’s Story

90 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

compliance, write stories for this and plan them along with the rest of the
team’s work. Work together with the compliance and internal audit teams to
understand your team’s responsibilities.

Frameworks, Models, and Standards

There are many quality models, but we’ll look at two to show how you can
adapt your agile process to fit within their constraints.

1. The Capability Maturity Model Integration (CMMI) aims to help or-
ganizations improve their process but doesn’t dictate specific develop-
ment practices to accomplish the improvements.

2. Information Technology Infrastructure Library (ITIL) is a set of best
practices for IT service management intended to help organizations
develop an effective quality process.

Both of these models can coexist happily with agile development. They’re
rooted in the same goal, making software development projects succeed.

Let’s look at CMMI, a framework for measuring the maturity of your pro-
cess. It defines each level by measuring whether the process is unknown, de-
fined, documented, permanent, or optimized. Agile projects have a defined
process, although not all teams document what they do. For example, man-
aging your requirements with index cards on a release planning wall with a
single customer making the final decisions is a defined process as long as you
do it all the time.

Retrospectives are aimed at constant process improvement, and teams should
be always be looking for ways to optimize processes. If the only thing your
team is lacking is documentation, then think about including your process
into your test strategy documentation.

Ask yourself what the minimum amount of documentation you could give to
satisfy the CMMI requirements would be. Janet has had success with using
diagrams like the one in Figure 5-2.

If ITIL has been introduced into your organization and affects change man-
agement, adapt your process to accommodate it. You might even find the
new process beneficial.

See the bibliogra-
phy for informa-
tion about
CMMI and agile
development.

EXISTING PROCESSES AND MODELS 91

When I worked in one organization that had a central call center to handle all of
the customers’ support calls, management implemented ITIL for the service part of
the organization. We didn’t think it would affect the development team until the
change management team realized that the number of open problems was
steadily increasing. No one understood why the number kept going up, so we
held a series of problem-solving sessions. First, we mapped out the process cur-
rently in effect.

The call center staff reported an incident in their tracking system. They tried to
solve the customer’s problem immediately. Often, that meant providing a work-
around for a software defect. The call center report was closed, but a problem

Project Initiation

Release Planning

The End Game
(System Test)

Release to Prod/
Support

Each Iteration

1
... .
X

Participate in sprint planning, estimating tasks
Write and execute story tests

Pair-test with other testers, developers
Business validation (customers)

Automate new functional test cases
Run automated regression test cases

Run project load tests
Demo to the stakeholders

Get an understanding of the project

Participate in sizing stories
Create test plans

Release mgmt tests mock deploy on staging
Smoke test on staging

Perform load test (if needed)
Complete regression test

Business testers perform UAT
Participate in release readiness

Participate in release to production
Participate in retrospectives

Figure 5-2 Documenting the test strategy

Janet’s Story

92 CHAPTER 5 � TRANSITIONING TYPICAL PROCESSES

report in Remedy was then opened, and someone in the development team was
sent an email. If the defect was accepted by the development team, a defect was
entered into Bugzilla to be fixed.

There was no loop back to the problem issue to close it when the defect was
finally fixed. We held several brainstorming sessions with all involved stakeholders
to determine the best and easiest solution to that problem.

The problem statement to solve was, “How does the project team report back to
the problem and change management folks to tell them when the bug was actu-
ally fixed?”

There were a couple of ways we could have solved the problem. One option was
to reference the Remedy ticket in Bugzilla and put hooks into Remedy so that
when we closed the Bugzilla defect, Remedy would detect it and close the Rem-
edy ticket. Of course, some of the bugs were never addressed, which meant the
Remedy tickets stayed open forever.

We actually found a better solution for the whole team, including the problem
change folks. We brainstormed a lot of different ideas but decided that when a
bug was opened in Bugzilla, we could close the Remedy ticket, because we realis-
tically would never go back to the original complaint and tell the customer who
reported it, or when the fix was done.

The change request that covered the release would automatically include all soft-
ware fixes, so it followed the change management process as well.

—Janet

If your organization is using some kind of process model or quality standards
management, educate yourself about it, and work with the appropriate spe-
cialists in your organization. Maintain the team’s focus on delivering high-
quality software that provides real business value, and see how you can work
within the model.

Process improvement models and frameworks emphasize discipline and con-
formance to process. Few software development methodologies require more
discipline than agile development. Standards simply enable you to measure
your progress toward your goal. Agile’s focus is on doing your best work and
constantly improving. Agile development is compatible with achieving what-
ever standards you set for yourself or borrow from a process improvement
measurement tool.

Separate your measurement goals and standards from your means to im-
prove those measurements. Set goals, and know what metrics you need to
measure success for areas that need improvement. Try using task cards for

SUMMARY 93

activities that provide the improvements in order to ensure they get the visi-
bility they need.

Working with existing quality processes and models is one of the biggest
cultural issues you may face as you transition to agile development. All of
these changes are hard, but when your whole team gets involved, none are
insurmountable.

SUMMARY

In this chapter, we looked at traditional quality-oriented processes and how
they can be adapted for an agile environment.

� The right metrics can help you to make sure your team is on track to
achieve its goals and provide a good return on your investment in
them.

� Metrics should be visible, providing necessary milestones upon which
to make decisions.

� The reasons to use a defect tracking system include for convenience,
for use as a knowledge base, and for traceability.

� Defect tracking systems are too often used as a communication tool,
and entering and tracking unnecessary bugs can be considered
wasteful.

� All tools, including the DTS, need to be used by the whole team, so
consider all perspectives when choosing a tool.

� A test strategy is a long-term overall test approach that can be put in a
static document; a test plan should be unique to the project.

� Think about alternatives before blindly accepting the need for specific
documents. For example, the agile approach to developing in small,
incremental chunks, working closely together, might remove the need
for formal traceability documents. Linking the source code control
system comments to tests might be another way.

� Traditional quality processes and process improvement models, such
as SAS 70 audits and CMMI standards, can coexist with agile develop-
ment and testing. Teams need to be open to thinking outside the box
and work together to solve their problems.

This page intentionally left blank

Part III

THE AGILE TESTING

QUADRANTS

Software quality has many dimensions, each requiring a different testing ap-
proach. How do we know all the different types of tests we need to do? How
do we know when we’re “done” testing? Who does which tests and how? In
this part, we explain how to use the Agile Testing Quadrants to make sure
your team covers all needed categories of testing.

Of course, testing requires tools, and we’ve included examples of tools to use,
strategies for using those tools effectively, and guidelines about when to use
them. Tools are easier to use when used with code that’s designed for testabil-
ity. These concerns and more are discussed in this part of the book.

This page intentionally left blank

97

Chapter 6

THE PURPOSE OF TESTING

Why do we test? The answer might seem obvious, but in fact, it’s pretty complex.
We test for a lot of reasons: to find bugs, to make sure the code is reliable, and
sometimes just to see if the code’s usable. We do different types of testing to
accomplish different goals. Software product quality has many components. In
this chapter, we introduce the Agile Testing Quadrants. The rest of the chapters
in Part III go into detail on each of the quadrants. The Agile Testing Quadrants
matrix helps testers ensure that they have considered all of the different types of
tests that are needed in order to deliver value.

THE AGILE TESTING QUADRANTS

In Chapter 1, “What Is Agile Testing, Anyway?,” we introduced Brian Marick’s
terms for different categories of tests that accomplish different purposes. Fig-
ure 6-1 is a diagram of the agile testing quadrants that shows how each of the
four quadrants reflects the different reasons we test. On one axis, we divide
the matrix into tests that support the team and tests that critique the product.
The other axis divides them into business-facing and technology-facing tests.

Quadrant Intro—
Purpose of Testing

Knowing When We’re Done
Shared Responsibility

Fitting All Types into “Doneness”

Tests That Support the Team

Tests That Critique the Product
Overview of Quadrants

Managing Technical Debt

Context-Driven

98 CHAPTER 6 � THE PURPOSE OF TESTING

The order in which we’ve numbered these quadrants has no relationship to
when the different types of testing are done. For example, agile development
starts with customer tests, which tell the team what to code. The timing of
the various types of tests depends on the risks of each project, the customers’
goals for the product, whether the team is working with legacy code or on a
greenfield project, and when resources are available to do the testing.

Tests that Support the Team

The quadrants on the left include tests that support the team as it develops
the product. This concept of testing to help the programmers is new to many
testers and is the biggest difference between testing on a traditional project
and testing on an agile project. The testing done in Quadrants 1 and 2 are more
requirements specification and design aids than what we typically think of
as testing.

Functional Tests
Examples
Story Tests
Prototypes
Simulations

Exploratory Testing
Scenarios

Usability Testing
UAT (User Acceptance Testing)

Alpha/Beta

Unit Tests
Component Tests

Performance & Load Testing
Security Testing

“ility” Testing

Business-Facing

Technology-Facing

Su
p

p
o

rt
in

g
th

e
Te

am Critiq
ue Pro

d
uct

Agile Testing Quadrants

Automated
& Manual Manual

Automated Tools

Q1

Q2 Q3

Q4

Figure 6-1 Agile Testing Quadrants

THE AGILE TESTING QUADRANTS 99

Quadrant 1

The lower left quadrant represents test-driven development, which is a core
agile development practice.

Unit tests verify functionality of a small subset of the system, such as an object
or method. Component tests verify the behavior of a larger part of the system,
such as a group of classes that provide some service [Meszaros, 2007]. Both
types of tests are usually automated with a member of the xUnit family of test
automation tools. We refer to these tests as programmer tests, developer-
facing tests, or technology-facing tests. They enable the programmers to mea-
sure what Kent Beck has called the internal quality of their code [Beck, 1999].

A major purpose of Quadrant 1 tests is test-driven development (TDD) or
test-driven design. The process of writing tests first helps programmers de-
sign their code well. These tests let the programmers confidently write code
to deliver a story’s features without worrying about making unintended
changes to the system. They can verify that their design and architecture de-
cisions are appropriate. Unit and component tests are automated and written
in the same programming language as the application. A business expert
probably couldn’t understand them by reading them directly, but these tests
aren’t intended for customer use. In fact, internal quality isn’t negotiated
with the customer; it’s defined by the programmers. Programmer tests are
normally part of an automated process that runs with every code check-in,
giving the team instant, continual feedback about their internal quality.

Quadrant 2

The tests in Quadrant 2 also support the work of the development team, but
at a higher level. These business-facing tests, also called customer-facing tests
and customer tests, define external quality and the features that the custom-
ers want.

Like the Quadrant 1 tests, they also drive development, but at a higher level.
With agile development, these tests are derived from examples provided by
the customer team. They describe the details of each story. Business-facing
tests run at a functional level, each one verifying a business satisfaction con-
dition. They’re written in a way business experts can easily understand using
the business domain language. In fact, the business experts use these tests to
define the external quality of the product and usually help to write them. It’s
possible this quadrant could duplicate some of the tests that were done at the
unit level; however, the Quadrant 2 tests are oriented toward illustrating and
confirming desired system behavior at a higher level.

Chapter 8, “Busi-
ness-Facing Tests
that Support the
Team,” explains
business conditions
of satisfaction.

100 CHAPTER 6 � THE PURPOSE OF TESTING

Most of the business-facing tests that support the development team also
need to be automated. One of the most important purposes of tests in these
two quadrants is to provide information quickly and enable fast trouble-
shooting. They must be run frequently in order to give the team early feed-
back in case any behavior changes unexpectedly. When possible, these
automated tests run directly on the business logic in the production code
without having to go through a presentation layer. Still, some automated
tests must verify the user interfaces and any APIs that client applications
might use. All of these tests should be run as part of an automated continu-
ous integration, build, and test process.

There is another group of tests that belongs in this quadrant as well. User in-
teraction experts use mock-ups and wireframes to help validate proposed
GUI (graphical user interface) designs with customers and to communicate
those designs to the developers before they start to code them. The tests in
this group are tests that help support the team to get the product built right
but are not automated. As we’ll see in the following chapters, the quadrants
help us identify all of the different types of tests we need to use in order to
help drive coding.

Some people use the term “acceptance tests” to describe Quadrant 2 tests, but
we believe that acceptance tests encompass a broader range of tests that in-
clude Quadrants 3 and 4. Acceptance tests verify that all aspects of the sys-
tem, including qualities such as usability and performance, meet customer
requirements.

Using Tests to Support the Team

The quick feedback provided by Quadrants 1 and 2 automated tests, which
run with every code change or addition, form the foundation of an agile
team. These tests first guide development of functionality, and when auto-
mated, then provide a safety net to prevent refactoring and the introduction
of new code from causing unexpected results.

We run our automated tests that support the team (the left half of the quadrants)
in separate build processes. Unit and component tests run in our “ongoing” build,
which takes about eight minutes to finish. Although the programmers run the unit
tests before they check in, the build might still fail due to integration problems or
environmental differences. As soon as we see the “build failed” email, the person
who checked in the offending code fixes the problem. Business-facing functional
tests run in our “full build,” which also runs continually, kicking off every time a
code change is checked in. It finishes in less than two hours. That’s still pretty
quick feedback, and again, a build failure means immediate action to fix the

Lisa’s Story

THE AGILE TESTING QUADRANTS 101

problem. With these builds as a safety net, our code is stable enough to release
every day of the iteration if we so choose.

—Lisa

The tests in Quadrants 1 and 2 are written to help the team deliver the busi-
ness value requested by the customers. They verify that the business logic and
the user interfaces behave according to the examples provided by the cus-
tomers. There are other aspects to software quality, some of which the custom-
ers don’t think about without help from the technical team. Is the product
competitive? Is the user interface as intuitive as it needs to be? Is the applica-
tion secure? Are the users happy with how the user interface works? We need
different tests to answer these types of questions.

Tests that Critique the Product

If you’ve been in a customer role and had to express your requirements for a
software feature, you know how hard it can be to know exactly what you
want until you see it. Even if you’re confident about how the feature should
work, it can be hard to describe it so that programmers fully understand it.

The word “critique” isn’t intended in a negative sense. A critique can include
both praise and suggestions for improvement. Appraising a software product
involves both art and science. We review the software in a constructive man-
ner, with the goal of learning how we can improve it. As we learn, we can feed
new requirements and tests or examples back to the process that supports the
team and guide development.

Quadrant 3

Business-facing examples help the team design the desired product, but at
least some of our examples will probably be wrong. The business experts
might overlook functionality, or not get it quite right if it isn’t their field of
expertise. The team might simply misunderstand some examples. Even when
the programmers write code that makes the business-facing tests pass, they
might not be delivering what the customer really wants.

That is where the tests to critique the product in the third and fourth quad-
rants come into play. Quadrant 3 classifies the business-facing tests that exer-
cise the working software to see if it doesn’t quite meet expectations or won’t
stand up to the competition. When we do business-facing tests to critique the
product, we try to emulate the way a real user would work the application. This
is manual testing that only a human can do. We might use some automated

102 CHAPTER 6 � THE PURPOSE OF TESTING

scripts to help us set up the data we need, but we have to use our senses, our
brains, and our intuition to check whether the development team has delivered
the business value required by the customers.

Often, the users and customers perform these types of tests. User Acceptance
Testing (UAT) gives customers a chance to give new features a good workout
and see what changes they may want in the future, and it’s a good way to
gather new story ideas. If your team is delivering software on a contract basis
to a client, UAT might be a required step in approving the finished stories.

Usability testing is an example of a type of testing that has a whole science of
its own. Focus groups might be brought in, studied as they use the applica-
tion, and interviewed in order to gather their reactions. Usability testing can
also include navigation from page to page or even something as simple as the
tabbing order. Knowledge of how people use systems is an advantage when
testing usability.

Exploratory testing is central to this quadrant. During exploratory testing
sessions, the tester simultaneously designs and performs tests, using critical
thinking to analyze the results. This offers a much better opportunity to learn
about the application than scripted tests. We’re not talking about ad hoc test-
ing, which is impromptu and improvised. Exploratory testing is a more
thoughtful and sophisticated approach than ad hoc testing. It is guided by a
strategy and operates within defined constraints. From the start of each
project and story, testers start thinking of scenarios they want to try. As small
chunks of testable code become available, testers analyze test results, and as
they learn, they find new areas to explore. Exploratory testing works the sys-
tem in the same ways that the end users will. Testers use their creativity and
intuition. As a result, it is through this type of testing that many of the most
serious bugs are usually found.

Quadrant 4

The types of tests that fall into the fourth quadrant are just as critical to agile
development as to any type of software development. These tests are technol-
ogy-facing, and we discuss them in technical rather than business terms.
Technology-facing tests in Quadrant 4 are intended to critique product char-
acteristics such as performance, robustness, and security. As we’ll describe in
Chapter 11, “Critiquing the Product using Technology-Facing Tests,” your
team already possesses many of the skills needed to do these tests. For exam-
ple, programmers might be able to leverage unit tests into performance tests
with a multi-threaded engine. However, creating and running these tests
might require the use of specialized tools and additional expertise.

THE AGILE TESTING QUADRANTS 103

In the past, we’ve heard complaints that agile development seems to ignore
the technology-facing tests that critique the product. These complaints
might be partly due to agile’s emphasis on having customers write and prior-
itize stories. Nontechnical customer team members often assume that the de-
velopers will take care of concerns such as speed and security, and that the
programmers are intent on producing only the functionality prioritized by
the customers.

If we know the requirements for performance, security, interaction with
other systems, and other nonfunctional attributes before we start coding, it’s
easier to design and code with that in mind. Some of these might be more
important than actual functionality. For example, if an Internet retail website
has a one-minute response time, the customers won’t wait to appreciate the
fact that all of the features work properly. Technology-facing tests that cri-
tique the product should be considered at every step of the development cy-
cle and not left until the very end. In many cases, such testing should even be
done before functional testing.

In recent years we’ve seen many new lightweight tools appropriate to an agile
development project become available to support tests. Automation tools can
be used to create test data, set up test scenarios for manual testing, drive se-
curity tests, and help make sense of results. Automation is mandatory for
some efforts such as load and performance testing.

Checking Nonfunctional Requirements
Alessandro Collino, a computer science and information engineer with Onion
S.p.A., who works on agile projects, illustrates why executing tests that cri-
tique the product early in the development process is critical to project
success.

Our Scrum/XP team used TDD to develop a Java application that would
convert one form of XML to another. The application performed complex
calculations on the data. For each simple story, we wrote a unit test to
check the conversion of one element into the required format, imple-
mented the code to make the test pass, and refactored as needed.

We also wrote acceptance tests that read subsets of the original XML
files from disk, converted them, and wrote them back. The first time we
ran the application on a real file to be converted, we got an out-of-
memory error. The DOM parser we used for the XML conversion couldn’t
handle such a large file. All of our tests used small subsets of the actual
files; we hadn’t thought to write unit tests using large datasets.

104 CHAPTER 6 � THE PURPOSE OF TESTING

When you and your team plan a new release or project, discuss which types
of tests from Quadrants 3 and 4 you need, and when they should be done.
Don’t leave essential activities such as load or usability testing to the end,
when it might be too late to rectify problems.

Using Tests that Critique the Product

The information produced during testing to review the product should be
fed back into the left side of our matrix and used to create new tests to drive
future development. For example, if the server fails under a normal load, new
stories and tests to drive a more scalable architecture will be needed. Using
the quadrants will help you plan tests that critique the product as well as tests
that drive development. Think about why you are testing to make sure that
the tests are performed at the optimum stage of development.

The short iterations of agile development give your team a chance to learn
and experiment with the different testing quadrants. If you find out too late
that your design doesn’t scale, start load testing earlier with the next story or
project. If the iteration demo reveals that the team misunderstood the cus-
tomer’s requirements, maybe you’re not doing a good enough job of writing
customer tests to guide development. If the team puts off needed refactoring,
maybe the unit and component tests aren’t providing enough coverage. Use
the agile testing quadrants to help make sure all necessary testing is done at
the right time.

KNOWING WHEN A STORY IS DONE

For most products, we need all four categories of testing to feel confident
we’re delivering the right value. Not every story requires security testing, but
you don’t want to omit it because you didn’t think of it.

Doing TDD gave us quick feedback on whether the code was working
per the functional requirements, but the unit tests didn’t test any non-
functional requirements such as capacity, performance, scalability, and
usability. If you use TDD to also check nonfunctional requirements, in this
case, capacity, you’ll have quick feedback and be able to avoid expen-
sive mistakes.

Alessandro’s story is a good example of how the quadrant numbering doesn’t
imply the order in which tests are done. When application performance is
critical, plan to test with production-level loads as soon as testable code is
available.

KNOWING WHEN A STORY IS DONE 105

My team uses “stock” cards to ensure that we always consider all different types of
tests. When unit testing wasn’t yet a habit, we wrote a unit test card for each story
on the board. Our “end to end” test card reminds the programmers to complete
the job of integration testing and to make sure all of the parts of the code work
together. A “security” card also gets considered for each story, and if appropriate,
put on the board to keep everyone conscious of keeping data safe. A task card to
show the user interface to customers makes sure that we don’t forget to do this as
early as possible, and it helps us start exploratory testing along with the customers
early, too. All of these cards help us address all the different aspects of product
quality.

Technology-facing tests that extend beyond a single story get their own row on
the story board. We use stories to evaluate load test tools and to establish perfor-
mance baselines to kick off our load and performance-testing efforts.

—Lisa

The technology-facing and business-facing tests that drive development are
central to agile development, whether or not you actually write task cards for
them. They give your team the best chance of getting each story “done.” Iden-
tifying the tasks needed to perform the technology-facing and business-
facing tests that critique the product ensures that you’ll learn what the prod-
uct is missing. A combination of tests from all four quadrants will let the
team know when each feature has met the customer’s criteria for functional-
ity and quality.

Shared Responsibility

Our product teams need a wide range of expertise to cover all of the agile
testing quadrants. Programmers should write the technology-facing tests
that support programming, but they might need help at different times from
testers, database designers, system administrators, and configuration special-
ists. Testers take primary charge of the business-facing tests in tandem with
the customers, but programmers participate in designing and automating
tests, while usability and other experts might be called in as needed. The
fourth quadrant, with technology-facing tests that critique the product, may
require more specialists. No matter what resources have to be brought in
from outside the development team, the team is still responsible for getting
all four quadrants of testing done.

We believe that a successful team is one where everybody participates in the
crafting of the product and that everyone shares the team’s internal pain
when things go wrong. Implementing the practices and tools that enable us

Lisa’s Story

106 CHAPTER 6 � THE PURPOSE OF TESTING

to address all four quadrants of testing can be painful at times, but the joy of
implementing a successful product is worth the effort.

MANAGING TECHNICAL DEBT

Ward Cunningham coined the term “technical debt” in 1992, but we’ve cer-
tainly experienced it throughout our careers in software development! Tech-
nical debt builds up when the development team takes shortcuts, hacks in
quick fixes, or skips writing or automating tests because it’s under the gun.
The code base gets harder and harder to maintain. Like financial debt, “inter-
est” compounds in the form of higher maintenance costs and lower team ve-
locity. Programmers are afraid to make any changes, much less attempt
refactoring to improve the code, for fear of breaking it. Sometimes this fear
exists because they can’t understand the coding to start with, and sometimes
it is because there are no tests to catch mistakes.

Each quadrant in the agile testing matrix plays a role in keeping technical
debt to a manageable level. Technology-facing tests that support coding and
design help keep code maintainable. An automated build and integration
process that runs unit tests is a must for minimizing technical debt. Catching
unit-level defects during coding will free testers to focus on business-facing
tests in order to guide the team and improve the product. Timely load and
stress testing lets the teams know whether their architecture is up to the job.

By taking the time and applying resources and practices to keep technical
debt to a minimum, a team will have time and resources to cover the testing
needed to ensure a quality product. Applying agile principles to do a good
job of each type of testing at each level will, in turn, minimize technical debt.

TESTING IN CONTEXT

Categorizations and definitions such as we find in the agile testing matrix
help us make sure we plan for and accomplish all of the different types of
testing we need. However, we need to bear in mind that each organization,
product, and team has its own unique situation, and each needs to do what
works for it in its individual situation. As Lisa’s coworker Mike Busse likes
to say, “It’s a tool, not a rule.” A single product or project’s needs might
evolve drastically over time. The quadrants are a helpful way to make sure
your team is considering all of the different aspects of testing that go into
“doneness.”

TESTING IN CONTEXT 107

We can borrow important principles from the context-driven school of test-
ing when planning testing for each story, iteration, and release.

� The value of any practice depends on its context.
� There are good practices in context, but there are no best practices.
� People, working together, are the most important part of any project’s

context.
� Projects unfold over time in ways that are often not predictable.
� The product is a solution. If the problem isn’t solved, the product

doesn’t work.
� Good software testing is a challenging intellectual process.
� Only through judgment and skill, exercised cooperatively throughout

the entire project, are we able to do the right things at the right times
to effectively test our products.

The quadrants help give context to agile testing practices, but you and your
team will have to adapt as you go. Testers help provide the feedback the team
needs to adjust and work better. Use your skills to engage the customers
throughout each iteration and release. Be conscious of when your team needs
roles or knowledge beyond what it currently has available.

The Agile Testing Quadrants provide a checklist to make sure you’ve covered
all your testing bases. Examine the answers to questions such as these:

� Are we using unit and component tests to help us find the right de-
sign for our application?

� Do we have an automated build process that runs our automated unit
tests for quick feedback?

� Do our business-facing tests help us deliver a product that matches
customers’ expectations?

� Are we capturing the right examples of desired system behavior? Do
we need more? Are we basing our tests on these examples?

� Do we show prototypes of UIs and reports to the users before we start
coding them? Can the users relate them to how the finished software
will work?

� Do we budget enough time for exploratory testing? How do we tackle
usability testing? Are we involving our customers enough?

� Do we consider technological requirements such as performance and
security early enough in the development cycle? Do we have the right
tools to do “ility” testing?

For more on con-
text-driven test-
ing, see www
.context-driven-
testing.com.

108 CHAPTER 6 � THE PURPOSE OF TESTING

Use the matrix as a map to get started. Experiment, and use retrospectives to
keep improving your efforts to guide development with tests and build on
what you learn about your product through testing.

SUMMARY

In this chapter we introduced the Agile Testing Quadrants as a convenient
way to categorize tests. The four quadrants serve as guidelines to ensure that
all facets of product quality are covered in the testing and developing process.

� Tests that support the team can be used to drive requirements.
� Tests that critique the product help us think about all facets of appli-

cation quality.
� Use the quadrants to know when you’re done, and ensure the whole

team shares responsibility for covering the four quadrants of the
matrix.

� Managing technical debt is an essential foundation for any software
development team. Use the quadrants to think about the different
dimensions.

� Context should always guide our testing efforts.

109

Chapter 7

TECHNOLOGY-FACING TESTS
THAT SUPPORT THE TEAM

We use the Agile Testing Quadrants as a guide to help us cover all the types of
testing we need and to help us make sure we have the right resources to succeed
at each type. In this chapter, we look at tests in the first quadrant, technology-
facing tests that support the team, and at tools to support this testing. The activ-
ities in this quadrant form the core of agile development.

AN AGILE TESTING FOUNDATION

We discuss Quadrant 1 first because the technology-facing tests that support
the team form the foundation of agile development and testing. See Figure 7-1
for a reminder of the Agile Testing Quadrants with this quadrant highlighted.
Quadrant 1 is about much more than testing. The unit and component tests
we talk about in Quadrant 1 aren’t the first tests written for each story, but
they help guide design and development. Without a foundation of test-driven

Technology-Facing
Tests that Support

the Team

Where Does One
Stop & the Other Start?

Go Faster, Do More

Value to Testers

Designing for Testing

Timely Feedback

Source Code Control

IDEs

Build Tools

Build Automation Tools

Unit Test Tools

What Testers Can Do

What Managers Can Do

Team Approach

What If You
Don’t Do Them?

Quadrant 1
Tests vs.

Quadrant 2

Why These Tests?

Toolkit Foundation of
Agile Testing

Purpose of Unit Tests

Supporting Infrastructure

110 CHAPTER 7 � TECHNOLOGY-FACING TESTS THAT SUPPORT THE TEAM

design, automated unit and component tests, and a continuous integration
process to run the tests, it’s hard to deliver value in a timely manner. All of the
testing in the other quadrants can’t make up for inadequacies in this one.
We’ll talk about the other quadrants in the next few chapters and explain how
they all fit together.

Teams need the right tools and processes to create and execute technology-
facing tests that guide development. We’ll give some examples of the types of
tools needed in the last section of this chapter.

The Purpose of Quadrant 1 Tests

Unit tests and component tests ensure quality by helping the programmer
understand exactly what the code needs to do, and by providing guidance in

Functional Tests
Examples
Story Tests
Prototypes
Simulations

Exploratory Testing
Scenarios

Usability Testing
UAT (User Acceptance Testing)

Alpha/Beta

Performance & Load Testing
Security Testing

“ility” Testing

Business-Facing

Technology-Facing

Su
p

p
o

rt
in

g
th

e
Te

am Critiq
ue Pro

d
uct

Agile Testing Quadrants

Automated
& Manual Manual

Tools

Q2 Q3

Q4

Automated

Unit Tests
Component Tests

Q1

Figure 7-1 The Agile Testing Quadrants, highlighting Quadrant 1

AN AGILE TESTING FOUNDATION 111

the right design. They help the team to focus on the story that’s being deliv-
ered and to take the simplest approach that will work. Unit tests verify the
behavior of parts as small as a single object or method [Meszaros, 2007].
Component tests help solidify the overall design of a deployable part of the
system by testing the interaction between classes or methods.

Developing unit tests can be an essential design tool when using TDD. When
an agile programmer starts a coding task, she writes a test that captures the
behavior of a tiny bit of code and then works on the code until the test passes.
By building the code in small test-code-test increments, the programmer has
a chance to think through the functionality that the customer needs. As
questions come up, she can ask the customer. She can pair with a tester to
help make sure all aspects of that piece of code, and its communication with
other units, are tested.

The term test-driven development misleads practitioners who don’t under-
stand that it’s more about design than testing. Code developed test-first is
naturally designed for testability. Quadrant 1 activities are all aimed at pro-
ducing software with the highest possible internal quality.

When teams practice TDD, they minimize the number of bugs that have to
be caught later on. Most unit-level bugs are prevented by writing the test be-
fore the code. Thinking through the design by writing the unit test means the
system is more likely to meet customer requirements. When post-development
testing time is occupied with finding and fixing bugs that could have been
detected by programmer tests, there’s no time to find the serious issues that
might adversely affect the business. The more bugs that leak out of our cod-
ing process, the slower our delivery will be, and in the end, it is the quality
that will suffer. That’s why the programmer tests in Quadrant 1 are so criti-
cal. While every team should adopt practices that work for its situation, a
team without these core agile practices is unlikely to benefit much from agile
values and principles.

Supporting Infrastructure

Solid source code control, configuration management, and continuous inte-
gration are essential to getting value from programmer tests that guide devel-
opment. They enable the team to always know exactly what’s being tested.
Continuous integration gives us a way to run tests every time new code is
checked in. When a test fails, we know who checked in the change that
caused the failure, and that person can quickly fix the problem. Continuous

112 CHAPTER 7 � TECHNOLOGY-FACING TESTS THAT SUPPORT THE TEAM

integration saves time and motivates each programmer to run the tests be-
fore checking in the new code. A continuous integration and build process
delivers a deployable package of code for us to test.

Agile projects that lack these core agile practices tend to turn into “mini-
waterfalls.” The development cycles are shorter, but code is still being thrown
“over the wall” to testers who run out of time to test because the code is of
poor quality. The term waterfall isn’t necessarily derogatory. We’ve worked
on successful “waterfall” projects where the programmers stringently auto-
mate unit tests, practice continuous integration, and use automated builds to
run tests. These successful “waterfall” projects also involve customers and
testers throughout the development cycle. When we code without appropri-
ate practices and tools, regardless of what we call the process, we’re not going
to deliver high-quality code in a timely manner.

WHY WRITE AND EXECUTE THESE TESTS?
We’re not going into any details here about how to do TDD, or the best ways to
write unit and component tests. There are several excellent books on those sub-
jects. Our goal is to explain why these activities are important to agile testers.
Let’s explore some reasons to use technology-facing tests that support the team.

Lets Us Go Faster and Do More

Speed should never be the end goal of an agile development team. Trying to
do things fast and meet tight deadlines without thinking about the quality
causes us to cut corners and revert to old, bad habits. If we cut corners, we’ll
build up more technical debt, and probably miss the deadline anyway. Hap-
pily, though, speed is a long-term side effect of producing code with the
highest possible internal quality. Continuous builds running unit tests notify
the team of failure within a few minutes of the problem check-in, and the
mistake can be found and fixed quickly. A safety net of automated unit and
code integration tests enables the programmers to refactor frequently. This
keeps the code at a reasonable standard of maintainability and delivers the
best value for the time invested. Technical debt is kept as low as possible.

If you’ve worked as a tester on a project where unit testing was neglected, you
know how easy it is to spend all of your time finding unit-level defects. You
might find so many bugs while testing the “happy path” that you never have
time to test more complex scenarios and edge cases. The release deadline is
pushed back as the “find and fix” cycle drags on, or testing is just stopped and
a buggy product is foisted off on unsuspecting customers.

WHY WRITE AND EXECUTE THESE TESTS? 113

Our years on agile teams have been Utopian in contrast to this scenario.
Driving coding practices with tests means that the programmers probably
understood the story’s requirements reasonably well. They’ve talked exten-
sively with the customers and testers to clarify the desired behaviors. All
parties understand the changes being made. By the time the team has com-
pleted all of the task cards for coding a story, or a thin, testable slice of one,
the feature has been well covered by unit and component tests. Usually the
programmers have made sure at least one path through the story works end
to end.

This means that we, as testers, waste little time finding low-level bugs. We’re
likely to try scenarios the programmers hadn’t thought of and to spend our
time on higher-level business functionality. Well-designed code is usually ro-
bust and testable. If we find a defect, we show it to the programmer, who writes
a unit test to reproduce the bug and then fixes it quickly. We actually have time
to focus on exploratory testing and the other types of in-depth tests to give the
code a good workout and learn more about how it should work. Often, the
only “bugs” we find are requirements that everyone on our team missed or
misunderstood. Even those are found quickly if the customer is involved and
has regular demos and test opportunities. After a development team has mas-
tered TDD, the focus for improvement shifts from bug prevention to figuring
out better ways to elicit and capture requirements before coding.

Test-First Development vs. Test-Driven Development
Gerard Meszaros [Meszaros 2007, pp. 813–814] offers the following descrip-
tion of how test-first development differs from test-driven development:

“Unlike test-driven development, test-first development merely says that
the tests are written before the production code; it does not imply that
the production code is made to work one test at a time (emergent
design). Test-first development can be applied at the unit test or customer
test level, depending on which tests we have chosen to automate.”

Erik Bos [2008] observes that test-first development involves both test-first
programming and test-first design, but there’s a subtle difference:

“With test-first design, the design follows the tests, whereas you can do
test-first programming of a design that you first write down on a white-
board. On larger projects, we tend to do more design via whiteboard
discussions; the team discusses the architecture around a whiteboard,
and codes test-first based on this design. On smaller projects, we do
practice test-driven design.”

114 CHAPTER 7 � TECHNOLOGY-FACING TESTS THAT SUPPORT THE TEAM

There are several different philosophies about when to write tests and for
what purpose. It’s up to each team to agree on the approach that helps it
achieve its quality objectives, although there is common agreement in the ag-
ile community that TDD definitely helps a team achieve better-quality soft-
ware. This is an important way that programmer tests support the team. Let’s
look at some more ways.

Making Testers’ Jobs Easier

The core practices related to programmer tests make lots of testing activities
easier to accomplish. Programmers work in their own sandboxes, where they
can test new code without affecting anyone else’s work. They don’t check in
code until it has passed a suite of regression tests in their sandbox.

The team thinks about test environments and what to use for test data. Unit
tests usually work with fake or mock objects instead of actual databases for
speed, but programmers still need to test against realistic data. Testers can
help them identify good test data. If the unit tests represent real-life data,
fewer issues will be found later.

Here’s a small example. When my current team first adopted agile development,
we didn’t have any automated tests. We had no way to produce a deployable
code package, and we had no rudimentary test environments or test databases. I
didn’t have any means to produce a build myself, either. We decided to start writ-
ing code test-first and committed to automating tests at all levels where appropri-
ate, but we needed some infrastructure first.

Our first priority was to implement a continuous build process, which was done in
a couple of days. Each build sent an email with a list of checked-in files and com-
ments about the updates. I could now choose which build to deploy and test.
The next priority was to provide independent test environments so that tests run
by one person would not interfere with other tests. The new database expert cre-
ated new schemas to meet testing needs and a “seed” database of canonical,
production-like data. These schemas could be refreshed on demand quickly with
a clean set of data. Each team member, including me, got a unique and indepen-
dent test environment.

Even before the team mastered TDD, the adopted infrastructure was in place to
support executing tests. This infrastructure enabled the team to start testing much
more effectively. Another aspect of trying to automate testing was dealing with a
legacy application that was difficult to test. The decisions that were made to
enable TDD also helped with customer-facing tests. We decided to start rewriting
the system in a new architecture that facilitated testing and test automation, not
only at the unit level but at all levels.

—Lisa

Lisa’s Story

WHY WRITE AND EXECUTE THESE TESTS? 115

Writing tests and writing code with those tests in mind means programmers
are always consciously making code testable. All of these good infrastructure-
related qualities spill over to business-facing tests and tests that critique the
product. The whole team is continually thinking of ways to improve design
and make testing easier.

Designing with Testing in Mind

One advantage of driving development with tests is that code is written with
the express intention of making the tests pass. The team has to think, right
from the beginning, about how it will execute and automate tests for every
story it codes. Test-driven development means that programmers will write
each test before they write the code to make it pass.

Writing “testable code” is a simple concept, but it’s not an easy task, espe-
cially if you’re working on old code that has no automated tests and isn’t de-
signed for testability. Legacy systems often have business logic, I/O, database,
and user interface layers intertwined. There’s no easy way to hook in to auto-
mate a test below the GUI or at the unit level.

A common approach in designing a testable architecture is to separate the
different layers that perform different functions in the application. Ideally,
you would want to access each layer directly with a test fixture and test algo-
rithms with different inputs. To do this, you isolate the business logic into its
own layer, using fake objects instead of trying to access other applications or
the actual database. If the presentation layer can be separated from underly-
ing business logic and database access, you can quickly test input validation
without testing underlying logic.

Layered Architectures and Testability
Lisa’s team took the “strangler application” approach to creating a testable sys-
tem where tests could be use to drive coding. Mike Thomas, the team’s senior
architect, explains how their new layered architecture enabled a testable design.

A layered architecture divides a code base into horizontal slices that
contain similar functionality, often related to a technology. The slices at
the highest level are the most specific and depend upon the slices
below, which are more general. For example, many layered code bases
have slices such as the following: UI, business logic, and data access.

116 CHAPTER 7 � TECHNOLOGY-FACING TESTS THAT SUPPORT THE TEAM

Another example of an approach to testable design is Alistair Cockburn’s
Ports and Adapters pattern [Cockburn, 2005]. This pattern’s intent is to “cre-
ate your application to work without either a UI or a database so you can run
automated regression tests against the application, work when the database
becomes unavailable, and link applications together without any user in-
volvement.” Ports accept outside events, and a technology-specific adapter
converts it into a message that can be understood by the application. In turn,
the application sends output via a port to an adapter, which creates the sig-
nals needed by the receiving human or automated users. Applications de-
signed using this pattern can be driven by automated test scripts as easily as
by actual users.

It’s more obvious how to code test-first on a greenfield project. Legacy sys-
tems, which aren’t covered by automated unit tests, present a huge challenge.
It’s hard to write unit tests for code that isn’t designed for testability, and it’s
hard to change code that isn’t safeguarded with unit tests. Many teams have

Horizontal layering is just one way to organize a code base: Another is
domain-oriented slices (such as payroll or order entry), which are gener-
ally thought of as “vertical.” These layering approaches can be com-
bined, of course, and all can be used to enhance testability.

Layering has advantages for testing, but only if the mechanism for “con-
necting” the slices provides flexibility. If a code base has tightly coupled
slices via such mechanisms as direct concrete class dependencies and
static methods, it is difficult to isolate a unit for testing, despite the layer-
ing. This makes most automated tests into integration tests, which can be
complicated and can run slowly. In many cases, testing can only be
accomplished by running the entire system.

Contrast this with a code base where the layers are separated by inter-
faces. Each slice depends only upon interfaces defined in the slice
beneath it rather than on specific classes. Dependencies on such inter-
faces are easy to satisfy with test doubles at test time: mocks, stubs, and
so on. Unit testing is thus simplified because each unit can truly be iso-
lated. For example, the UI can be tested against mock business layer
objects, and the business layer can be tested against mock data access
objects, avoiding live database access.

The layered approach has allowed Lisa’s team to succeed in automating tests
at all levels and drive development with both technology-facing and business-
facing tests.

See the bibliogra-
phy for more infor-
mation on Alastair
Cockburn’s Ports
and Adapters
pattern.

WHY WRITE AND EXECUTE THESE TESTS? 117

followed the “legacy code rescue” techniques explained by Michael Feathers
in Working Effectively with Legacy Code [Feathers, 2005]. Other teams, such
as Lisa’s, aim to “strangle” their legacy code. This strategy stems from Martin
Fowler’s “strangler application” [Fowler, 2004]. New stories were coded test-
first in a new architecture while the old system was still maintained. Over
time, much of the system has been converted to the new architecture, with
the goal of eventually doing away with the old system.

Agile testing in a legacy mainframe type of environment presents particular
challenges, not the least of which is the lack of availability of publications and
information about how to do it successfully. COBOL, mainframes, and their
ilk are still widely used. Let agile principles and values guide your team as
you look for ways to enable automated testing in your application. You might
have to adapt some techniques; for example, maybe you can’t write code test-
first, but you can test soon after writing the code. When it’s the team’s prob-
lem to solve, and not just the testers’ problem, you’ll find a way to write tests.

Testing Legacy Systems
John Voris, a developer with Crown Cork and Seal, works in the RPG lan-
guage, a cousin of COBOL, which runs on the operating system previously
known as AS 400 and now known as System i. John was tasked with merging
new code with a vendor code base. He applied tenets of Agile, Lean, and
IBM-recommended coding practices to come up with an approach he calls
“ADEPT” for “AS400 Displays for External Prototyping and Testing.” While he
isn’t coding test-first, he’s testing “Minutes Afterward.” Here’s how he
summed up his approach:

• Write small, single-purpose modules (not monolithic programs), and
refactor existing programs into modules. Use a Presenter First develop-
ment approach (similar to the Model View Presenter or Model View
Controller pattern).

• Define parameter interfaces for the testing harness based on screen
formats and screen fields. The only drawback here is numbers are
defined as zoned decimals rather than packed hexadecimal, but this is
offset by the gain in productivity.

• “Minutes after” coding each production module, create a testing pro-
gram using the screen format to test via the UI. The UI interface for the
test is created prior to the production program, because the UI testing
interface is the referenced interface for the production module. The
impetus for running a test looms large for the programmer, because
most of the coding for the test is already done.

The bibliography
has links to more
articles about “res-
cue” and “stran-
gler” approaches
to legacy code.

For more informa-
tion about Pre-
senter First
development, see
the bibliography.

118 CHAPTER 7 � TECHNOLOGY-FACING TESTS THAT SUPPORT THE TEAM

Your team can find an approach to designing for testability that works for
you. The secret is the whole-team commitment to testing and quality. When
a team is constantly working to write tests and make them pass, it finds a way
to get it done. Teams should take time to consider how they can create an ar-
chitecture that will make automated tests easy to create, inexpensive to main-
tain, and long-lived. Don’t be afraid to revisit the architecture if automated
tests don’t return enough value for the investment in them.

Timely Feedback

The biggest value of unit tests is in the speed of their feedback. In our opin-
ion, a continuous integration and build process that runs the unit tests
should finish within ten minutes. If each programmer checks code in several
times a day, a longer build and test process will cause changes to start stack-
ing up. As a tester, it can be frustrating to have to wait a long time for new
functionality or a bug fix. If there’s a compile error or unit test failure, the de-
lay gets even worse, especially if it’s almost time to go home!

A build and test process that runs tests above the unit level, such as func-
tional API tests or GUI tests, is going to take longer. Have at least one build
process that runs quickly, and a second that runs the slower tests. There
should be at least one daily “build” that runs all of the slower functional tests.
However, even that can be unwieldy. When a test fails and the problem is
fixed, how long will it take to know for sure that the build passes again?

If your build and test process takes too long, ask your team to analyze the cause
of the slowdown and take steps to speed up the build. Here are a few examples.

� Database access usually consumes lots of time, so consider using fake
objects, where possible, to replace the database, especially at the unit
level.

� Move longer-running integration and database-access tests to the sec-
ondary build and test process.

� See if tests can run in parallel so that they finish faster.

• Use standard test data sets, which are unchanging, canonical test data,
to drive the tests.

• This approach, in which the test programs are almost auto-generated,
lends itself to automation with a record/playback tool that would cap-
ture data inputs and outputs, with tests run in a continuous build, using
RPGUnit.

For more about
RPGUnit, see www
.RPGUnit.org.

WHERE DO TECHNOLOGY-FACING TESTS STOP? 119

� Run the minimum tests needed for regression testing your system.
� Distribute tasks across multiple build machines.
� Upgrade the hardware and software that run the build.
� Find the area that takes the most time and take incremental steps to

speed it up.

Early in my current team’s agile evolution, we had few unit tests, so we included a
few GUI smoke tests in our continual build, which kicked off on every check-in to
the source code control system. When we had enough unit tests to feel good
about knowing when code was broken, we moved the GUI tests and the FitNesse
functional tests into a separate build and test process that ran at night, on the
same machine as our continual build.

Our continual ongoing build started out taking less than 10 minutes, but soon was
taking more than 15 minutes to complete. We wrote task cards to diagnose and
fix the problem. The unit tests that the programmers had written early on weren’t
well designed, because nobody was sure of the best way to write unit tests. Time
was budgeted to refactor the unit tests, use mock data access objects instead of
the real database, and redesign tests for speed. This got the build to around eight
minutes. Every time it has started to creep up, we’ve addressed the problem with
refactoring, removing unnecessary tests, upgrading the hardware, and choosing
different software that helped the build run faster.

As our functional tests covered more code, the nightly build broke more often.
Because the nightly build ran on the same machine as the continual ongoing one,
the only way to verify that the build was “green” again was to stop the ongoing
build, which removed our fast feedback. This started to waste everyone’s time. We
bought and set up another build machine for the longer build, which now also
runs continuously. This was much less expensive than spending so much time
keeping two builds running on the same machine, and now we get quick feed-
back from our functional tests as well.

—Lisa

Wow, multiple continuous build and test processes providing constant feed-
back—it sounds like a dream to a lot of testers. Regression bugs will be caught
early, when they’re cheapest to fix. This is a great reason for writing technology-
facing tests. Can we get too carried away with them, though? Let’s look at the
line between technology-facing tests and business-facing tests.

WHERE DO TECHNOLOGY-FACING TESTS STOP?
We often hear people worry that the customer-facing tests will overlap so much
with the technology-facing tests that the team will waste time. We know that

Lisa’s Story

120 CHAPTER 7 � TECHNOLOGY-FACING TESTS THAT SUPPORT THE TEAM

business-facing tests might cover a bit of the same ground as unit or code inte-
gration tests, but they have such different purposes that waste isn’t a worry.

For example, we have a story to calculate a loan amortization schedule and
display it to a user who’s in the process of requesting a loan. A unit test for
this story would likely test for illegal arguments, such as an annual payment
frequency if the business doesn’t allow it. There might be a unit test to figure
the anticipated loan payment start date given some definition of amount, in-
terest rate, start date, and frequency. Unit-level tests could cover different
combinations of payment frequency, amount, interest date, term, and start
date in order to prove that the amortization calculation is correct. They
could cover scenarios such as leap years. When these tests pass, the program-
mer feels confident about the code.

Each unit test is independent and tests one dimension at a time. This means
that when a unit test fails, the programmer can identify the problem quickly
and solve the issue just as quickly. The business-facing tests very seldom cover
only one dimension, because they are tackled from a business point of view.

The business-facing tests for this story would define more details for the
business rules, the presentation in the user interface, and error handling.
They would verify that payment details, such as the principal and interest ap-
plied, display correctly in the user interface. They would test validations for
each field on the user interface, and specify error handling for situations such
as insufficient balance or ineligibility. They could test a scenario where an ad-
ministrator processes two loan payments on the same day, which might be
harder to simulate at the unit level.

The business-facing tests cover more complex user scenarios and verify that
the end user will have a good experience. Push tests to lower levels whenever
possible; if you identify a test case that can be automated at the unit level,
that’s almost always a better return on investment.

If multiple areas or layers of the application are involved, it might not be pos-
sible to automate at the unit level. Both technology-facing and business-
facing levels might have tests around the date of the first loan payment, but
they check for different reasons. The unit test would check the calculation of
the date, and the business-facing test would verify that it displays correctly in
the borrower’s loan report.

Learning to write Quadrant 1 tests is hard. Many teams making the transi-
tion to agile development start out with no automated unit tests, not even a

Chapter 13, “Why
We Want to Auto-
mate Tests and
What Holds Us
Back,” talks more
about the ROI of
the different types
of tests.

WHAT IF THE TEAM DOESN’T DO THESE TESTS? 121

continuous integration and build process. In the next section, we suggest ac-
tions agile testers can take if their teams don’t tackle Quadrant 1 tests.

WHAT IF THE TEAM DOESN’T DO THESE TESTS?
Many an organization has decided to try agile development, or at least stated
that intention, without understanding how to make a successful transition.
When we’re in a tester role, what can we do to help the development team
implement TDD, continuous integration, and other practices that are key to
successful development?

Our experience over the years has been that if we aren’t programmers our-
selves, we don’t necessarily have much credibility when we urge the program-
mers to adopt practices such as TDD. If we could sit down and show them
how to code test-first, that would be persuasive, but many of us testers don’t
have that kind of experience. We’ve also found that evangelizing doesn’t work.
It’s not that hard to convince someone conceptually that TDD is a good idea.
It’s much trickier to help them get traction actually coding test-first.

What Can Testers Do?

If you’re a tester on a so-called “agile” team that isn’t even automating unit
tests or producing continuous builds—or at a minimum, doing builds on a
daily basis—you’re going to get frustrated pretty quickly. Don’t give up; keep
brainstorming for a way to get traction on a positive transition. Try using so-
cial time or other relaxing activity to take some quality time to see what new
ideas you can generate to get all team members on board.

One trap to avoid is having testers write the unit tests. Because TDD is really-
more of a design activity, it’s essential that the person writing the code also
write the tests, before writing the code. Programmers also need the immediate
feedback that automated unit tests give. Unit tests written by someone else af-
ter the code is written might still guard against regression defects, but they
won’t have the most valuable benefits of tests written by the programmer.

Whenever I’ve wanted to effect change, I’ve turned to the patterns in Fearless
Change by Mary Lynn Manns and Linda Rising [2004]. After working on two XP
teams, I joined a team that professed a desire to become agile but wasn’t making
strides toward solid development practices. I found several patterns in Fearless
Change to try to move the team toward agile practices.

Lisa’s Story

122 CHAPTER 7 � TECHNOLOGY-FACING TESTS THAT SUPPORT THE TEAM

“Ask for Help” was one pattern that helped me. This pattern says, in part: “Since
the task of introducing a new idea into an organization is a big job, look for peo-
ple and resources to help your efforts” [Manns and Rising, 2004]. When I wanted
my team to start using FitNesse, I identified the programmer who was most sympa-
thetic to my cause and asked him to pair with me to write FitNesse tests for the
story he was working on. He told the other programmers about the benefits he
derived from the FitNesse tests, which encouraged them to try it too. Most people
want to help, and agile is all about the team working together, so there’s no rea-
son to go it alone.

“Brown Bag” is another change pattern that my teams have put to good use. For
example, my current team held several brown bag sessions where they wrote unit
tests together. “Guru on Your Side” is a productive pattern in which you enlist the
help of a well-respected team member who might understand what you’re trying
to achieve. A previous team I was on was not motivated to write unit tests. The
most experienced programmer on the team agreed with me that test-driven
development was a good idea, and he set an example for the rest of the team.

We think you’ll find that there’s always someone on an agile team who’s sympa-
thetic to your cause. Enlist that person’s support, especially if the team perceives
him or her as a senior-level guru.

—Lisa

As a tester on an agile team, there’s a lot you can do to act as a change agent,
but your potential impact is limited. In some cases, strong management sup-
port is the key to driving the team to engage in Quadrant 1 activities.

What Can Managers Do?

If you’re managing a development team, you can do a lot to encourage test-
driven development and unit test automation. Work with the product owner
to make quality your goal, and communicate the quality criteria to the team.
Encourage the programmers to take time to do their best work instead of
worrying about meeting a deadline. If a delivery date is in jeopardy, push to
reduce the scope, not the quality. Your job is to explain to the business man-
agers how making quality a priority will ensure that they get optimum busi-
ness value.

Give the team time to learn, and provide expert, hands-on training. Bring in
an experienced agile development coach or hire someone with experience in
using these practices who can transfer those skills to the rest of the team.
Budget time for major refactoring, for brainstorming about the best ap-
proach to writing unit and code integration tests, and for evaluating, install-
ing, and upgrading tools. Test managers should work with development

TOOLKIT 123

managers to encourage practices that enhance testability and allow testers to
write executable tests. Test managers can also make sure testers have time to
learn how to use the automation tools and frameworks that the team decides
to implement.

It’s a Team Problem

While you can find ways to be an effective change agent, the best thing to do
is involve the whole team in solving the problems. If you aren’t already doing
retrospectives after every iteration, propose trying this practice or some
other type of process improvement. At the retrospective, raise issues that are
hampering successful delivery. For example, “We aren’t finishing testing tasks
before the end of the iteration” is a problem for the whole team to address. If
one reason for not finishing is the high number of unit-level bugs, suggest
experimenting with TDD, but allow programmers to propose their own ways
to address the problem. Encourage the team to try a new approach for a few
iterations and see how it works.

Technology-facing tests that support the team’s development process are an
important foundation for all of the testing that needs to happen. If the team
isn’t doing an adequate job with the tests in this quadrant, the other types of
testing will be much more difficult. This doesn’t mean you can’t get value
from the other quadrants on their own—it just means it will be harder to do
so because the team’s code will lack internal quality and everything will take
longer.

Technology-facing tests can’t be done without the right tools and infrastruc-
ture. In the next section, we look at examples of the types of tools a team
needs to be effective with Quadrant 1 tests.

TOOLKIT

There’s no magical tool that will ensure success. However, tools can help
good people do their best work. Building up the right infrastructure to sup-
port technology-facing tests is critical. There’s a huge selection of excellent
tools available, and they improve all the time. Your team must find the tools
that work best for your situation.

Source Code Control

Source code control is known by other names too, such as version control or
revision control. It’s certainly not new, or unique to agile development, but

More about retro-
spectives and pro-
cess improvement
in Chapter 19,
“Wrap Up the
Iteration.”

124 CHAPTER 7 � TECHNOLOGY-FACING TESTS THAT SUPPORT THE TEAM

no software development team can succeed without it. That’s why we’re dis-
cussing it here. Without source code control, you’ll never be sure what you’re
testing. Did the programmer change only the module he said he changed, or
did he forget changes he made to other modules? You can’t back out un-
wanted or erroneous changes without some kind of versioning system.
Source code control keeps different programmers from walking on each
other’s changes to the same modules. Without versioning, you can’t be sure
what code to release to production.

Software Configuration Management Patterns: Effective Teamwork, Practical
Integrations [2003], by Stephen Berczuk and Brad Appleton, is a good resource
to use to learn how and why to use source code control. Source code control
is essential to any style of software development.

Use source code control for automated test scripts, too. It’s important to tie
the automated tests with the corresponding code version that they tested in
case you need to rerun tests against that version in the future. When you label
or tag a build, make sure you label or tag the test code too, even if it doesn’t
get released to production.

Teams can organize their code hierarchy to provide a repository for produc-
tion code, corresponding unit tests, and higher-level test scripts. Doing this
might require some brainstorming and experimenting in order to get the
right structure.

There are many terrific options to choose from. Open source systems such as
CVS and Subversion (SVN) are easy to implement, integrate with a continu-
ous build process and IDEs, and are robust. Vendor tools such as IBM Ratio-
nal ClearCase and Perforce might add features that compensate for the
increased overhead they often bring.

Source code control is tightly integrated with development environments.
Let’s look at some IDEs used by agile teams.

IDEs

A good IDE (integrated development environment) can be helpful for pro-
grammers and testers on an agile team. The IDE integrates with the source
code control system to help prevent problems with versioning and changes
walking on each other. The editors inside an IDE are specific to the program-
ming language and flag errors even as you write the code. Most importantly,
IDEs provide support for refactoring.

TOOLKIT 125

Programmers who use an IDE tend to have strong personal preferences.
However, sometimes an organization decrees that all programmers must use
a specific IDE. This might be because of licensing, or it might be intended to
encourage open pair programming. It is easier to pair with another program-
mer if the other person uses the same IDE, but it’s generally not essential for
the same one to be used. Most tools work similarly, so it’s not hard to change
from one IDE to another in order to meet new needs or take advantage of
new features. Some diehards still prefer to use tried-and-true technology
such as vi, vim, or emacs with make files rather than an IDE.

Open source IDEs such as Eclipse and NetBeans are widely used by agile
teams, along with proprietary systems such as Visual Studio and IntelliJ
IDEA. IDEs have plug-ins to support different languages and tools. They
work as well with test scripts as they do with production code.

On my current team, some programmers were using IntelliJ IDEA, while others
used Eclipse. Environmental differences in rare cases caused issues, such as tests
passing in the IDE but not the full build, or check-ins via the IDE causing havoc in
the source code control system. Generally, though, use of different IDEs caused
no problems. Interestingly, over time most of the Eclipse users switched. Pairing
with the IntelliJ users led them to prefer it.

I use Eclipse to work with the automated test scripts as well as to research issues
with the production code. The Ruby plug-in helps us with our Ruby and Watir
scripts, and the XML editor helps with our Canoo WebTest scripts. We can run unit
tests and do builds through the IDE. Programmers on the team helped me set up
and start using Eclipse, and it has saved huge amounts of time. Maintaining the
automated tests is much easier, and the IDE’s “synchronize” view helps me remem-
ber to check in all of the modules I’ve changed.

Test tools are starting to come out with their own IDEs or plug-ins to work with
existing IDEs such as Eclipse. Take advantage of these powerful, time-saving,
quality-promoting tools.

—Lisa

Testers who aren’t automating tests through an IDE, but who want to be able
to look at changed snippets of code, can use tools such as FishEye that enable
the testers to get access to the code through the automated build.

As of this writing, IDEs have added support for dynamic languages such as
Ruby, Groovy, and Python. Programmers who use dynamic languages may
prefer lighter-weight tools, but they still need good tools that support good
coding practices, such as TDD and refactoring.

Lisa’s Story

126 CHAPTER 7 � TECHNOLOGY-FACING TESTS THAT SUPPORT THE TEAM

Regardless of the development environment and tools being used, agile
teams need a framework that will integrate code changes from different pro-
grammers, run the unit tests to verify no regression bugs have occurred, and
provide the code in a deployable format.

Build Tools

Your team needs some way to build the software and create a deployable jar,
war, or other type of file. This can be done with shell-based tools such as
make, but those tools have limitations, such as the platforms where they
work. Agile teams that we know use tools such as ant, Nant, and Maven to
build their projects. These tools not only manage the build but also provide
easy ways to report and document build results, and they integrate easily with
build automation and test tools. They also integrate with IDEs.

Build Automation Tools

Continuous integration is a core practice for agile teams. You need a way to
not only build the project but also run automated tests on each build to make
sure nothing broke. A fully automated and reproducible build that runs
many times a day is a key success factor for agile teams. Automated build
tools provide features such as email notification of build results, and they in-
tegrate with build and source code control tools.

Commonly used tools as of the writing of this book include the open source
tools CruiseControl, CruiseControl.net, CruiseControl.rb, and Hudson.
Other open source and proprietary tools available at publication time are
AnthillPro, Bamboo, BuildBeat, CI Factory, Team City, and Pulse, just to name
a few.

Without an automated build process you’ll have a hard time deploying code
for testing as well as releasing. Build management and build automation
tools are easy to implement and absolutely necessary for successful agile
projects. Make sure you get your build process going early, even before you
start coding. Experiment with different tools when you find you need more
features than your current process provides.

Unit Test Tools

Unit test tools are specific to the language in which you’re coding. “xUnit”
tools are commonly used by agile teams, and there’s a flavor for many differ-
ent languages, including JUnit for Java, NUnit for .NET, Test::Unit for Perl
and Ruby, and PyUnit for Python.

SUMMARY 127

Behavior-driven development is another flavor of test-driven development,
spelling out expected behavior to drive tests with tools such as RSpec and easyb.

GUI code can and should be developed test-first as well. Some tools for rich-
client unit testing are TestNG, Abbot, and SWTBot.

Tools such as EasyMock and Ruby/Mock help with implementing mock ob-
jects and test stubs, an integral part of well-designed unit tests.

The tools programmers use to write technology-facing tests can also be used
for business-facing tests. Whether they are suited for that purpose in your
project depends on the needs of your team and your customers.

SUMMARY

In this chapter, we explained the purpose of technology-facing tests that sup-
port the team, and we talked about what teams need to use them effectively.

� Technology-facing tests that support programming let the team pro-
duce the highest quality code possible; they form the foundation for
all other types of testing.

� The benefits of this quadrant’s tests include going faster and doing
more, but speed and quantity should never be the ultimate goal.

� Programmers write technology-facing tests that support the team and
provide great value to testers by enhancing the internal quality and
testability of the system.

� Teams that fail to implement the core practices related to agile devel-
opment are likely to struggle.

� Legacy systems usually present the biggest obstacles to test-driven
development, but these problems can be overcome with incremental
approaches.

� If your team doesn’t now do these tests, you can help them get
started by engaging other team members and getting support from
management.

� There can be some overlap between technology-facing tests and
business-facing tests that support the team. However, when faced
with a choice, push tests to the lowest level in order to maximize ROI.

� Teams should set up continuous integration, build, and test processes
in order to provide feedback as quickly as possible.

� Agile teams require tools for tasks such as source code control, test
automation, IDEs, and build management in order to facilitate
technology-facing tests that support the team.

See Chapter 9,
“Toolkit for
Business-Facing
Tests that Support
the Team,” for
more information
on behavior-
driven develop-
ment tools.

See the bibliogra-
phy for links and
books to help
your team search
for the right unit
test tools.

This page intentionally left blank

129

Chapter 8

BUSINESS-FACING TESTS THAT
SUPPORT THE TEAM

In the last chapter, we talked about programmer tests, those low-level tests that
help programmers make sure they have written the code right. How do they
know the right thing to build? In phased and gated methodologies, we try to
solve that by gathering requirements up front and putting as much detail in
them as possible. In projects using agile practices, we put all our faith in story
cards and tests that customers understand in order to help code the right thing.
These “understandable” tests are the subject of this chapter.

DRIVING DEVELOPMENT WITH
BUSINESS-FACING TESTS

Yikes, we’re starting an iteration with no more information than what fits on
an index card, something like what’s shown in Figure 8-1.

That’s not much information, and it’s not meant to be. Stories are a brief de-
scription of desired functionality and an aid to planning and prioritizing
work. On a traditional waterfall project, the development team might be

Business-Facing
Tests that Support

the Team

Common Language

Eliciting Requirements

Advance Clarity

Conditions of Satisfaction

Ripple Effects

Customer Availability

The Requirements
Quandary

Test Mitigate
Risks

Post Conditions

Peril: Forgetting the Big Picture

Knowing When We’re Done

Testability and Automation Driving Development with
Business-Facing Tests

Thin Slices, Small Chunks

130 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

given a wordy requirements document that includes every detail of the fea-
ture set. On an agile project, the customer team and development team strike
up a conversation based on the story. The team needs requirements of some
kind, and they need them at a level that will let them start writing working
code almost immediately. To do this, we need examples to turn into tests that
will confirm what the customer really wants.

These business-facing tests address business requirements. These tests help
provide the big picture and enough details to guide coding. Business-facing
tests express requirements based on examples and use a language and format
that both the customer and development teams can understand. Examples
form the basis of learning the desired behavior of each feature, and we use
those examples as the basis for our story tests in Quadrants 2 (see Figure 8-2).

Business-facing tests are also called “customer-facing,” “story,” “customer,”
and “acceptance” tests. The term “acceptance test” is particularly confusing,
because it makes some people think only of “user acceptance tests.” In the
context of agile development, acceptance tests generally refer to the business-
facing tests, but the term could also include the technology-facing tests from
Quadrant 4, such as the customer’s criteria for system performance or secu-
rity. In this chapter, we’re discussing only the business-facing tests that sup-
port the team by guiding development and providing quick feedback.

As we explained in the previous two chapters, the order in which we present
these four quadrants isn’t related to the order in which we might perform

Figure 8-1 Story to set up conversation

Story PA-2

As an internet shopper on LotsO’Stuff.xx, I want free

shipping when my order exceeds the free shipping

threshold, so that I can take advantage of ordering

more at one time.

DRIVING DEVELOPMENT WITH BUSINESS-FACING TESTS 131

activities from each quadrant. The business-facing tests in Quadrant 2 are
written for each story before coding is started, because they help the team
understand what code to write. Like the tests in Quadrant 1, these tests drive
development, but at a higher level. Quadrant 1 activities ensure internal qual-
ity, maximize team productivity, and minimize technical debt. Quadrant 2
tests define and verify external quality, and help us know when we’re done.

The customer tests to drive coding are generally written in an executable for-
mat, and automated, so that team members can run the tests as often as they
like in order to see if the functionality works as desired. These tests, or some
subset of them, will become part of an automated regression suite so that fu-
ture development doesn’t unintentionally change system behavior.

As we discuss the stories and examples of desired behavior, we must also define
nonfunctional requirements such as performance, security, and usability. We’ll

Exploratory Testing
Scenarios

Usability Testing
UAT (User Acceptance Testing)

Alpha/Beta

Unit Tests
Component Tests

Performance & Load Testing
Security Testing

“ility” Testing

Business-Facing

Technology-Facing

Su
p

p
o

rt
in

g
th

e
Te

am Critiq
ue Pro

d
uct

Agile Testing Quadrants

Manual

Automated Tools

Q1

Q3

Q4

Functional Tests
Examples
Story Tests
Prototypes
Simulations

Automated
& Manual

Q2

Figure 8-2 The Agile Testing Quadrants, highlighting Quadrant 2

Part V, “An Itera-
tion in the Life,”
examines the or-
der in which we
perform tests from
the different
quadrants.

132 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

also make note of scenarios for manual exploratory testing. We’ll talk about
these other types of testing activities in the chapters on Quadrants 3 and 4.

We hear lots of questions relating to how agile teams get requirements. How
do we know what the code we write should do? How do we obtain enough
information to start coding? How do we get the customers to speak with one
voice and present their needs clearly? Where do we start on each story? How
do we get customers to give us examples? How do we use those to write
story tests?

This chapter explains our strategy for creating business-facing tests that sup-
port the team as it develops each story. Let’s start by talking more about
requirements.

THE REQUIREMENTS QUANDARY

Just about every development team we’ve known, agile or not, struggles with
requirements. Teams on traditional waterfall projects might invest months in
requirements gathering only to have them be wrong or quickly get out of
date. Teams in chaos mode might have no requirements at all, with the pro-
grammers making their best guess as to how a feature should work.

Agile development embraces change, but what happens when requirements
change during an iteration? We don’t want a long requirements-gathering
period before we start coding, but how can we be sure we (and our custom-
ers) really understand the details of each story?

In agile development, new features usually start out life as stories, or groups
of stories, written by the customer team. Story writing is not about figuring
out implementation details, although high-level discussions can have an im-
pact on dependencies and how many stories are created. It’s helpful if some
members of the technical team can participate in story-writing sessions so
that they can have input into the functionality stories and help ensure that
technical stories are included as part of the backlog. Programmers and testers
can also help customers break stories down to appropriate sizes, suggest al-
ternatives that might be more practical to implement, and discuss dependen-
cies between stories.

Stories by themselves don’t give much detail about the desired functionality.
They’re usually just a sentence that expresses who wants the feature, what the
feature is, and why they want it. “As an Internet shopper, I need a way to delete
items from my shopping cart so I don’t have to buy unwanted items” leaves a

THE REQUIREMENTS QUANDARY 133

lot to the imagination. Stories are only intended as a starting point for an on-
going dialogue between business experts and the development team. If team
members understand what problem the customer is trying to solve, they can
suggest alternatives that might be simpler to use and implement.

In this dialogue between customers and developers, agile teams expand on
stories until they have enough information to write appropriate code. Testers
help elicit examples and context for each story, and help customers write
story tests. These tests guide programmers as they write the code and help
the team know when it has met the customers’ conditions of satisfaction. If
your team has use cases, they can help to supplement the example or coach-
ing test to clarify the needed functionality (see Figure 8-3).

In agile development, we accept that we’ll never understand all of the re-
quirements for a story ahead of time. After the code that makes the story tests
pass is completed, we still need to do more testing to better understand the
requirements and how the features should work.

After customers have a chance to see what the team is delivering, they might
have different ideas about how they want it to work. Often customers have a
vague idea of what they want and a hard time defining exactly what that is.
The team works with the customer or customer proxy for an iteration and
might deliver just a kernel of a solution. The team keeps refining the function-
ality over multiple iterations until it has defined and delivered the feature.

Being able to iterate is one reason agile development advocates small releases
and developing one small chunk at a time. If our customer is unhappy with
the behavior of the code we deliver in this iteration, we can quickly rectify
that in the next, if they deem it important. Requirements changes are pretty
much inevitable.

We must learn as much as we can about our customers’ wants and needs. If
our end users work in our location, or it’s feasible to travel to theirs, we
should sit with them, work alongside them, and be able to do their jobs if we
can. Not only will we understand their requirements better but we might
even identify requirements they didn’t think to state.

Example/
Coaching Test

Requirement+ + =Story Conversation

Figure 8-3 The makeup of a requirement

134 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Tests need to include more than the customers’ stated requirements. We need
to test for post conditions, impact on the system as a whole, and integration
with other systems. We identify risks and mitigate those with tests as needed.
All of these factors guide our coding.

Common Language

We can also use our tests to provide a common language that’s understood
by both the development team and the business experts. As Brian Marick
[2004] points out, a shared language helps the business people envision the
features they want. It helps the programmers craft well-designed code that’s
easy to extend. Real-life examples of desired and undesired behavior can be
expressed so that they’re understood by both the business and technical
sides. Pictures, flow diagrams, spreadsheets, and prototypes are accessible to
people with different backgrounds and viewpoints. We can use these tools to
find examples and then easily turn those examples into tests. The tests need
to be written in a way that’s comprehensible to a business user reading them
yet still executable by the technical team.

Business-facing tests also help define scope, so that everyone knows what is
part of the story and what isn’t. Many of the test frameworks now allow
teams to create a domain language and define tests using that language. Fit
(Functional for Integrated Framework) is one of those.

The Perfect Customer
Andy Pols allowed us to reprint this story from his blog [Pols, 2008]. In it, he
shows how his customer demanded a test, wrote it, and realized the story
was out of scope.

On a recent project, our customer got so enthusiastic about our Fit tests
that he got extremely upset when I implemented a story without a Fit test.
He refused to let the system go live until we had the Fit test in place.

The story in question was very technical and involved sending a particular
XML message to an external system. We just could not work out what a
Fit test would look like for this type of requirement. Placing the expected
XML message, with all its gory detail, in the Fit test would not have been
helpful because this is a technical artifact and of no interest to the busi-
ness. We could not work out what to do. The customer was not around
to discuss this, so I just went ahead and implemented the story (very
naughty!).

More on Fit in
Chapter 9, “Tool-
kit for Business-
Facing Tests that
Support the
Team.”

THE REQUIREMENTS QUANDARY 135

It’s fine to say that our customers will provide to us the examples that we
need to have in order for us to understand the value that each story should
deliver. But what if they don’t know how to explain what they want? In the
next section, we’ll suggest ways to help customers define their conditions of
satisfaction.

Eliciting Requirements

If you’ve ever been a customer requesting a particular software feature, you
know how hard it is to articulate exactly what you want. Often, you don’t re-
ally know exactly what you want until you can see, feel, touch and use it. We
have lots of ways to help our customers get clarity about what they want.

Ask Questions

Start by asking questions. Testers can be especially good at asking a variety of
questions because they are conscious of the big picture, the business-facing

What the customer wanted was to be sure that we were sending the
correct product information in the XML message. To resolve the issue, I
suggested that we have a Fit test that shows how the product attributes
get mapped onto the XML message using Xpath, although I still thought
this was too technical for a business user.

We gave the customer a couple of links to explain what XPath was so
that he could explore whether this was a good solution for him. To my
amazement, he was delighted with XPath (I now know who to turn to
when I have a problem with XPath) and filled in the Fit test.

The interesting bit for me is that as soon as he knew what the message
looked like and how it was structured, he realized that it did not really
support the business—we were sending information that was outside
our scope of our work and that should have been supplied by another
system. He was also skeptical about the speed at which the external
team could add new products due to the complex nature of the XML.

Most agile people we tell this story to think we have the “perfect
customer!”

Even if your customers aren’t perfect, involving them in writing customer tests
gives them a chance to identify functionality that’s outside the scope of the
story. We try to write customer tests that customers can read and compre-
hend. Sometimes we set the bar too low. Collaborate with your customers to
find a tool and format for writing tests that works for both the customer and
development teams.

136 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

and technical aspects of the story, and are always thinking of the end user ex-
perience. Types of general questions to ask are:

� Is this story solving a problem?
� If so, what’s the problem we’re trying to solve?
� Could we implement a solution that doesn’t solve the problem?
� How will the story bring value to the business?
� Who are the end users of the feature?
� What value will they get out of it?
� What will users do right before and right after they use that feature?
� How do we know we’re done with this story?

One question Lisa likes to ask is, “What’s the worst thing that could happen?”
Worst-case scenarios tend to generate ideas. They also help us consider risk
and focus our tests on critical areas. Another good question is, “What’s the
best thing that could happen?” This question usually generates our happy
path test, but it might also uncover some hidden assumptions.

Use Examples

Most importantly, ask the customer to give you examples of how the feature
should work. Let’s say the story is about deleting items out of an online shop-
ping cart. Ask the customer to draw a picture on a whiteboard of how that
delete function might look. Do they want any extra features, such as a confir-
mation step, or a chance to save the item in case they want to retrieve it later?
What would they expect to see if the deletion couldn’t be done?

Examples can form the basis for our tests. Our challenge is to capture exam-
ples, which might be expressed in the business domain language, as tests that
can actually be executed. Some customers are comfortable expressing exam-
ples using a test tool such as Fit or FitNesse as long as they can write them in
their domain language.

Let’s explore the difference between an example and a test with a simple story
(see Figure 8-4). People often get confused between these two terms.

An example would look something like this:

There are 5 items on a page. I want to select item 1 for $20.25 and put
it in the shopping cart. I click to the next page, which has 5 more items.
I select a second item on that page for $5.38 and put it in my shopping
cart. When I say I’m done shopping, it will show both the item from the

THE REQUIREMENTS QUANDARY 137

first page and the item from the second page in my shopping cart, with
the total of $25.63

The test could be quite a bit different. We’ll use a Fit type format in Table 8-1 to
show you how the test could be represented.

The test captures the example in an executable format. It might not use exactly
the same inputs, but it encapsulates the sample user scenario. More test cases
can be written to test boundary conditions, edge cases, and other scenarios.

Multiple Viewpoints

Each example or test has one point of view. Different people will write differ-
ent tests or examples from their unique perspectives. We’d like to capture as
many different viewpoints as we can, so think about your users.

Figure 8-4 Story to use as a base for examples and tests

Story PA-2

As a shopper, I want to add items to the shopping

cart so I can pay for them all at once.

Table 8-1 Test for Story PA-2

Inputs Expected Results

ID Item Price Total Cost # of Items

001 Item A 20.25 20.25 1

002 Item D 0.01 20.26 2

003 Item F 100.99 121.25 3

138 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Getting the requirements right is an area where team members in many dif-
ferent roles can jump in to help. Business analysts, subject matter experts,
programmers, and various members of the customer team all have some-
thing to contribute. Think about other stakeholders, such as your production
support team. They have a very unique perspective.

We often forget about nonfunctional requirements such as “How long does
the system need to be up? What happens if it fails? If we have middleware
that passes messages, do we expect messages to be large enough that we
might need to consider loss during transmission? Or will they be a constant
size? What happens if there is no traffic for hours? Does the system need to
warn someone?” Testing for these types of requirements usually falls into
quadrants 3 and 4, but we still need to write tests to make sure they get done.

All of the examples that customers give to the team add up quickly. Do we re-
ally have to turn all of these into executable tests? Not as long as we have the
customers there to tell us if the code is working the way they want. With tech-
niques such as paper prototyping, designs can be tested before a line of code
is written.

Wizard of Oz Testing
Gerard Meszaros, a Certified ScrumMaster (Practicing) and Agile Coach,
shared his story about Wizard of Oz Testing on Agile Projects. He describes a
good example of how artifacts we generate to elicit requirements can help
communicate meaning in an unambiguous form.

We thought we were ready to release our software. We had been build-
ing it one iteration at a time under the guidance of an on-site customer
who had prioritized the functionality based on what he needed to enter
into integration testing with his business partners. We consciously
deferred the master data maintenance and reporting functionality to
later iterations to ensure we had the functionality needed for integration
testing ready. The integration testing went fine, with just a few defects
logged (all related to missing or misunderstood functionality). In the
meantime, we implemented the master data maintenance in parallel with
integration testing in the last few iterations. When we went into accep-
tance testing with the business users, we got a rude shock: They hated
the maintenance and reporting functionality! They logged so many
defects and “must-have improvements” that we had to delay the release
by a month. So much for coming up with a plan that would allow us to
deliver early!

THE REQUIREMENTS QUANDARY 139

While we were reimplementing the master data maintenance, I attended
the Agile 2005 conference and took a tutorial by Jeff Patton. One of the
exercises was building paper prototypes of the UI for a sample applica-
tion. Then we “tested” the paper prototypes with members of the other
groups as our users and found out how badly flawed our UI designs
were. Déjà vu! The tutorial resembled my reality.

On my return to the project back home, I took the project manager I was
mentoring in agile development aside and suggested that paper proto-
typing and “Wizard of Oz” testing (the Wizard of Oz reference is to a
human being acting as a computer—sort of the “man behind the cur-
tain”) might have avoided our one-month setback. After a very short dis-
cussion, we decided to give it a try on our release 2 functionality. We
stayed late a couple of evenings and designed the UI using screenshots
from the R1 functionality overlaid with hand-drawn R2 functionality. It
was a long time since either of us had used scissors and glue sticks, and it
was fun!

For the Wizard of Oz testing with users, we asked our on-site customers
to find some real users with whom to do the testing. They also came up
with some realistic sample tasks for the users to try to execute. We put
the sample data into Excel spreadsheets and printed out various combi-
nations of data grids to use the in the testing. Some future users came to
town for a conference. We hijacked pairs of them for an hour each and
did our testing.

I acted as the “wizard,” playing the part of the computer (“it’s a 286 pro-
cessor so don’t expect the response times to be very good”). The on-site
customer introduced the problem and programmers acted as observers,
recording the missteps the users made as “possible defects.” After just a
few hours, we had huge amounts of valuable data about which parts of
our UI design worked well and which parts needed rethinking. And
there was little argument about which was which! We repeated the
usability testing with other users when we had alpha versions of the
application available and gained further valuable insights. Our business
customer found the exercise so valuable that on a subsequent project
the business team set about doing the paper prototyping and Wizard of
Oz testing with no prompting from the development team. This might
have been influenced somewhat by the first e-mail we got from a real
user 30 minutes after going live: “I love this application!!!”

Developing user interfaces test-first can seem like an intimidating effort. The
Wizard of Oz technique can be done before writing a single line of code. The
team can test user interaction with the system and gather plenty of informa-
tion to understand the desired system behavior. It’s a great way to facilitate
communication between the customer and development teams.

140 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Close, constant collaboration between the customer team and the developer
team is key to obtaining examples on which to base customer tests that drive
coding. Communication is a core agile value, and we talk about it more in
the next section.

Communicate with Customers

In an ideal world, our customers are available to us all day, every day. In real-
ity, many teams have limited access to their business experts, and in many
cases, the customers are in a different location or time zone. Do whatever
you can to have face-to face conversations. When you can’t, conference calls,
phone conversations, emails, instant messages, cameras, and other commu-
nication tools will have to substitute. Fortunately, more tools to facilitate re-
mote communication are available all the time. We’ve heard of teams, such as
Erika Boyer’s team at iLevel by Weyerhaeuser, that use webcams that can be
controlled by the folks in the remote locations. Get as close to you can to di-
rect conversation.

I worked on a team where the programmers were spread through three time
zones and the customers were in a different one. We sent different programmers,
testers, and analysts to the customer site for every iteration, so that each team
member had “face time” with the customers at least every third iteration. This built
trust and confidence between the developer and customer teams. The rest of the
time we used phone calls, open conference calls, and instant messages to ask
questions. With continual fine-tuning based on retrospective discussions, we suc-
ceeded in satisfying and even delighting the customers.

—Lisa

Even when customers are available and lines of communication are wide
open, communication needs to be managed. We want to talk to each member
of the customer team, but they all have different viewpoints. If we get several
different versions of how a piece of functionality should work, we won’t
know what to code. Let’s consider ways to get customers to agree on the con-
ditions of satisfaction for each story.

Advance Clarity

If your customer team consists of people from different parts of the organiza-
tion, there may be conflicting opinions among them about exactly what’s in-
tended by a particular story. In Lisa’s company, business development wants

Lisa’s Story

THE REQUIREMENTS QUANDARY 141

features that generate revenue, operations wants features that cut down on
phone support calls, and finance wants features that streamline accounting,
cash management, and reporting. It’s amazing how many unique interpreta-
tions of the same story can emerge from people who have differing viewpoints.

Although we had a product owner when we first implemented Scrum, we still got
different directives from different customers. Management decided to appoint a
vice president with extensive domain and operations knowledge as the new
product owner. He is charged with getting all of the stakeholders to agree on
each story’s implications up front. He and the rest of the customer team meet reg-
ularly to discuss upcoming themes and stories, and to agree on priorities and con-
ditions of satisfaction. He calls this “advance clarity.”

—Lisa

A Product Owner is a role in Scrum. He’s responsible not only for achieving
advance clarity but also for acting as the “customer representative” in priori-
tizing stories. There’s a downside, though. When you funnel the needs of
many different viewpoints through one person, something can be lost. Ide-
ally, the development team should sit together with the customer team and
learn how to do the customer’s work. If we understand the customer’s needs
well enough to perform its daily tasks, we have a much better chance of pro-
ducing software that properly supports those tasks.

Our team didn’t implement the product owner role at first and used the domain
experts on the team to determine prioritization and clarity. It worked well, but the
achieving consensus took many meetings because each person had different
experiences. The product was better for it, but there were trade-offs. The many
meetings meant the domain experts were not always available for answering ques-
tions from the programmers, so coding was slower than anticipated.

There were four separate project teams working on the same product, but each
one was focused on different features. After several retrospectives, and a lot of
problem-solving sessions, each project team appointed a Product Owner. The
number of meetings was cut down significantly because most business decisions
were made by the domain experts on their particular project. Meetings were held
for all of the domain experts if there were any differences of opinion, and the
Product Owner facilitated bringing consensus on an issue. Decisions were made
much faster, the domain experts were more available for answering questions by
the team, and were able to keep up with the acceptance tests.

—Janet

Lisa’s Story

Janet’s Story

142 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

However your team chooses to bring together varying viewpoints, it is im-
portant that there is only “one voice of the customer” presented to the team.

We said that product owners provide conditions of satisfaction. Let’s look more
closely at what we mean.

Conditions of Satisfaction

There are conditions of satisfaction for the whole release as well as for each
feature or story. Acceptance tests help define the story acceptance. Your devel-
opment team can’t successfully deliver what the business wants unless condi-
tions of satisfaction for a story are agreed to up front. The customer team
needs to “speak with one voice.” If you’re getting different requirements from
different stakeholders, you might need to push back and put off the story until
you have a firm list of business satisfaction conditions. Ask the customer rep-
resentative to provide a minimum amount of information on each story so
that you can start every iteration with a productive conversation.

The best way to understand the customer team’s requirements is to talk with
the customers face to face. Because everyone struggles with “requirements,”
there are tools to help the customer team work through each story. Condi-
tions of satisfaction should include not only the features that the story deliv-
ers but also the impacts on the larger system.

Lisa’s product owner uses a checklist format to sort out issues such as:

� Business satisfaction conditions
� Impact on existing functions such as the website, documents,

invoices, forms, or reports
� Legal considerations
� The impact on regularly scheduled processes
� References to mock-ups for UI stories
� Help text, or who will provide it
� Test cases
� Data migration (as appropriate)
� Internal communication that needs to happen
� External communication to business partners and vendors

The product owner uses a template to put this information on the team’s
wiki so that it can be used as team members learn about the stories and start
writing tests.

Chapter 9, “Tool-
kit for Business-
Facing Tests that
Support the
Team,” includes
example check-
lists as well as
other tools for
expressing
requirements.

THE REQUIREMENTS QUANDARY 143

These conditions are based on key assumptions and decisions made by the
customer team for a story. They generally come out of conversations with the
customer about high-level acceptance criteria for each story. Discussing con-
ditions of satisfaction helps identify risky assumptions and increases the
team’s confidence in writing and correctly estimating all of the tasks that are
needed to complete the story.

Ripple Effects

In agile development, we focus on one story at a time. Each story is usually a
small component of the overall application, but it might have a big ripple ef-
fect. A new story drops like a little stone into the application water, and we
might not think about what the resulting waves might run into. It’s easy to
lose track of the big picture when we’re focusing on a small number of stories
in each iteration.

Lisa’s team finds it helpful to make a list of all of the parts of the system that
might be affected by a story. The team can check each “test point” to see what
requirements and test cases it might generate. A small and innocent story
might have a wide-ranging impact, and each part of the application that it
touches might present another level of complexity. You need to be aware of all
the potential impacts of any code change. Making a list is a good place to start.
In the first few days of the iteration, the team can research and analyze affected
areas further and see whether any more task cards are needed to cover them all.

In one project I was on, we used a simple spreadsheet that listed all of the high-
level functionality of the application under test. During release planning, and at
the start of each new iteration, we reviewed the list and thought about how the
new or changing functionality would affect those areas. That became the starting
point for determining what level of testing needed to be done in each functional
area. This impact analysis was in addition to the actual story testing and enabled
our team to see the big picture and the impact of the changes to the rest of the
system.

—Janet

Stories that look small but that impact unexpected areas of the system can
come back to bite you. If your team forgets to consider all dependencies, and
if the new code intersects with existing functionality, your story might take
much longer than planned to finish. Make sure your story tests include the
less obvious fallout from implementing the new functionality.

Janet’s Story

Chapter 16, “Hit
the Ground Run-
ning,” and Chap-
ter 17, “Iteration
Kickoff,” give ex-
amples of when
and how teams
can plan cus-
tomer tests and
explore the wider
impact of each
story.

144 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Take time to identify the central value each story provides and figure out an
incremental approach to developing it. Plan small increments of writing
tests, writing code, and testing the code some more. This way, your Quadrant 2
tests ensure you’ll deliver the minimum value as planned.

THIN SLICES, SMALL CHUNKS

Writing stories is a tricky business. When the development team estimates
new stories, it might find some stories too big, so it will ask the customer
team to go back and break them into smaller stories. Stories can be too small
as well, and might need to be combined with others or simply treated as
tasks. Agile development, including testing, takes on one small chunk of
functionality at a time.

When your team embarks on a new project or theme, ask the product owner
to bring all of the related stories to a brainstorming session prior to the first
iteration for that theme. Have the product owner and other interested stake-
holders explain the stories. You might find that some stories need to be sub-
divided or that additional stories need to be written to fill in gaps.

After you understand what value each story should deliver and how it fits in
the context of the system, you can break the stories down into small, man-
ageable pieces. You can write customer tests to define those small increments,
while keeping in mind the impact on the larger application.

A smart incremental approach to writing customer tests that guide develop-
ment is to start with the “thin slice” that follows a happy path from one end
to the other. Identifying a thin slice, also called a “steel thread” or “tracer bul-
let,” can be done on a theme level, where it’s used to verify the overall archi-
tecture. This steel thread connects all of the components together, and after
it’s solid, more functionality can be added.

We find this strategy works at the story level, too. The sooner you can build the
end-to-end path, the sooner you can do meaningful testing, get feedback, start
automating tests, and start exploratory testing. Begin with a thin slice of the
most stripped-down functionality that can be tested. This can be thought of as
the critical path. For a user interface, this might start with simply navigating
from one page to the next. We can show this to the customer and see whether
the flow makes sense. We could write a simple automated GUI test. For the
free-shipping threshold story at the beginning of this chapter, we might start
by verifying the logic used to sum up the order total and determine whether it

See Chapter 10,
“Business-Facing
Tests that Critique
the Product,” for
more about ex-
ploratory testing.

THIN SLICES, SMALL CHUNKS 145

qualifies for free shipping, without worrying about how it will look on the UI.
We could automate tests for it with a functional test tool such as FitNesse.

After the thin slice is working, we can write customer tests for the next chunk
or layer of functionality, and write the code that makes those tests pass. Now
we’ll have feedback for this small increment, too. Maybe we add the UI to
display the checkout page showing that the order qualified for free shipping,
or add the layer to persist updates to the database. We can add on to the auto-
mated tests we wrote for the first pass. It’s a process of “write tests—write
code—run tests—learn.” If you do this, you know that all of the code your
team produces satisfies the customer and works properly at each stage.

My team has found that we have to focus on accomplishing a simple thin slice and
add to it in tiny increments. Before we did this, we tended to get stuck on one
part of the story. For example, if we had a UI flow that included four screens, we’d
get so involved in the first one that we might not get to the last one, and there
was no working end-to-end path. By starting with an end-to-end happy path and
adding functionality a step at a time, we can be sure of delivering the minimum
value needed.

Here’s an example of our process. The story was to add a new conditional step to
the process of establishing a company’s retirement plan. This step allows users to
select mutual fund portfolios, but not every user has access to this feature. The
retirement plan establishment functionality is written in old, poorly designed leg-
acy code. We planned to write the new page in the new architecture, but linking
the new and old code together is tricky and error prone. We broke the story
down into slices that might look tiny but that allowed us to manage risk and mini-
mize the time needed to code and test the story. Figure 8-5 shows a diagram of
incremental steps planned for this story.

The #1 thin slice is to insert a new, empty page based on a property. While it’s not
much for our customers to look at, it lets us test the bridge between old and new
code, and then verify that the plan establishment navigation still works properly.
Slice #2 introduces some business logic: If no mutual fund portfolios are available
for the company, skip to the fund selection step, which we’re not changing yet. If
there are fund portfolios available, display them on the new step 3. In slice #3, we
change the fund selection step, adding logic to display the funds that make up the
portfolios. Slice #4 adds navigational elements between various steps in the
establishment process.

We wrote customer tests to define each slice. As the programmers completed
each one, we manually tested it and showed it to our customers. Any problems
found were fixed immediately. We wrote an automated GUI test for slice #1, and
added to it as the remaining steps were finished. The story was difficult because of
the old legacy code interacting with the new architecture, but the stepwise
approach made implementation smooth, and saved time.

See Part IV, “Auto-
mation,” for more
about regression
test automation.

Lisa’s Story

146 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

When we draw diagrams such as this to break stories into slices, we upload pho-
tos of them to our team wiki so our remote team member can see them too. As
each step is finished, we check it off in order to provide instant visual feedback.

—Lisa

If the task of writing customer tests for a story seems confusing or over-
whelming, your team might need to break the story into smaller steps or
chunks. Finishing stories a small step at a time helps spread out the testing
effort so that it doesn’t get pushed to the end of the iteration. It also gives you
a better picture of your progress and helps you know when you’re done—a
subject we’ll explore in the next section.

HOW DO WE KNOW WE’RE DONE?
We have our business-facing tests that support the team—those tests that
have been written to ensure the conditions of satisfaction have been met.
They start with the happy path and show that the story meets the intended

Figure 8-5 Incremental steps

Check the bibliog-
raphy for Gerard
Meszaros’s article
“Using Storyo-
types to Split
Bloated XP
Stories.”

TESTS MITIGATE RISK 147

need. They cover various user scenarios and ensure that other parts of the
system aren’t adversely affected. These tests have been run, and they pass (or
at least they’ve identified issues to be fixed).

Are we done now? We could be, but we’re not sure yet. The true test is
whether the software’s user can perform the action the story was supposed to
provide. Activities from Quadrants 3 and 4, such as exploratory testing, us-
ability testing, and performance testing will help us find out. For now, we
just need to do some customer tests to ensure that we have captured all of the
requirements. The business users or product owners are the right people to
determine whether every requirement has been delivered, so they’re the right
people to do the exploring at this stage.

When the tests all pass and any missed requirements have been identified, we
are done for the purpose of supporting the programmers in their quest for
code that does the “right thing.” It does not mean we are done testing. We’ll
talk much more about that in the chapters that follow.

Another goal of customer tests is to identify high-risk areas and make sure
the code is written to solidify those. Risk management is an essential practice
in any software development methodology, and testers play a role in identify-
ing and mitigating risks.

TESTS MITIGATE RISK

Customer tests are written not only to define expected behavior of the code
but to manage risk. Driving development with tests doesn’t mean we’ll iden-
tify every single requirement up front or be able to predict perfectly when
we’re done. It does give us a chance to identify risks and mitigate them with
executable test cases. Risk analysis isn’t a new technique. Agile development
inherently mitigates some risks by prioritizing business value into small,
tested deliverable pieces and by having customer involvement in incremental
acceptance. However, we should still brainstorm potential events, the proba-
bility they might occur, and the impact on the organization if they do hap-
pen so that the right mitigation strategy can be employed.

Coding to predefined tests doesn’t work well if the tests are for improbable
edge cases. While we don’t want to test only the happy path, it’s a good place
to start. After the happy path is known, we can define the highest risk scenar-
ios—cases that not only have a bad outcome but also have a good possibility
of happening.

148 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

In addition to asking the customer team questions such as “What’s the worst
thing that could happen?,” ask the programmers questions like these: “What
are the post conditions of this section of code? What should be persisted in
the database? What behavior should we look for down the line?” Specify tests
to cover potentially risky outcomes of an action.

My team considers worst-case scenarios in order to help us identify customer tests.
For example, we planned a story to rewrite the first step of a multistep account
creation wizard with a couple of new options. We asked ourselves questions such
as the following: “When the user submits that first page, what data is inserted in the
database? Are any other updates triggered? Do we need to regression test the
entire account setup process? What about activities the user account might do
after setup?” We might need to test the entire life cycle of the account. We don’t
have time to test more than necessary, so decisions about what to test are critical.
The right tests help us mitigate the risk brought by the change.

—Lisa

Programmers can identify fragile parts of the code. Does the story involve
stitching together legacy code with a new architecture? Does the code being
changed interact with another system or depend on third-party software? By
discussing potential impacts and risky areas with programmers and other team
members, we can plan appropriate testing activities.

There’s another risk. We might get so involved writing detailed test cases up
front that the team loses the forest in the trees; that is, we can forget the big
picture while we concentrate on details that might prove irrelevant.

Peril: Forgetting the Big Picture
It’s easy to slip into the habit of testing only individual stories or basing your
testing on what the programmer tells you about the code. If you find yourself
finding integration problems between stories late in the release or that a lot
of requirements are missing after the story is “done,” take steps to mitigate
this peril.

Always consider how each individual story impacts other parts of the system.
Use realistic test data, use concrete examples as the basis of your tests, and
have a lot of whiteboard discussions (or their virtual equivalent) in order to
make sure everyone understands the story. Make sure the programmers don’t
start coding before any tests are written, and use exploratory testing to find
gaps between stories.

Remember the end goal and the big picture.

Lisa’s Story

TESTABILITY AND AUTOMATION 149

As an agile team, we work in short iterations, so it’s important to time-box the
time spent writing tests before we start. After each iteration is completed, take
the time to evaluate whether more detail up front would have helped. Were
there enough tests to keep the team on track? Was there a lot of wasted time
because the story was misunderstood? Lisa’s team has found it best to write
high-level story tests before coding, to write detailed test cases once coding
starts, and then to do exploratory testing on the code as it’s delivered in order
to give the team more information and help make needed adjustments.

Janet worked on a project that had some very intensive calculations. The
time spent creating detailed examples and tests before coding started, in or-
der to ensure that the calculations were done correctly, was time well spent.
Understanding the domain, and the impact of each story, is critical to assess-
ing the risk and choosing the correct mitigation strategy.

While business-facing tests can help mitigate risks, other types of tests are
also critical. For example, many of the most serious issues are usually uncov-
ered during manual exploratory testing. Performance, security, stability, and
usability are also sources of risk. Tests to mitigate these other risks are dis-
cussed in the chapters on Quadrants 3 and 4.

Experiment and find ways that your team can balance using up-front detail
and keeping focused on the big picture. The beauty of short agile iterations is
that you have frequent opportunities to evaluate how your process is working
so that you can make continual improvements.

TESTABILITY AND AUTOMATION

When programmers on an agile team get ready to do test-driven develop-
ment, they use the business-facing tests for the story in order to know what
to code. Working from tests means that everyone thinks about the best way
to design the code to make testing easier. The business-facing tests in Quad-
rant 2 are expressed as automated tests. They need to be clearly understood,
easy to run, and provide quick feedback; otherwise, they won’t get used.

It’s possible to write manual test scripts for the programmers to execute be-
fore they check in code so that they can make sure they satisfied the cus-
tomer’s conditions, but it’s not realistic to expect they’ll go to that much
trouble for long. When meaningful business value has to be delivered every
two weeks or every 30 days, information has to be direct and automatic. In-
experienced agile teams might accept the need to drive coding with auto-
mated tests at the developer test level more easily than at the customer test

150 CHAPTER 8 � BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

level. However, without the customer tests, the programmers have a much
harder time knowing what unit tests to write.

Each agile team must find a process of writing and automating business-
facing tests that drive development. Teams that automate only technology-
facing tests find that they can have bug-free code that doesn’t do what the
customer wants. Teams that don’t automate any tests will anchor themselves
with technical debt.

Quadrant 2 contains a lot of different types of tests and activities. We need
the right tools to facilitate gathering, discussing, and communicating exam-
ples and tests. Simple tools such as paper or a whiteboard work well for gath-
ering examples if the team is co-located. More sophisticated tools help teams
write business-facing tests that guide development in an executable, autom-
atable format. In the next chapter, we’ll look at the kinds of tools needed to
elicit examples, and to write, communicate, and execute business-facing tests
that support the team.

SUMMARY

In this chapter, we looked at ways to support the team during the coding pro-
cess with business-facing tests.

� In agile development, examples and business-facing tests, rather than
traditional requirements documents, tell the team what code to write.

� Working on thin slices of functionality, in short iterations, gives cus-
tomers the opportunity to see and use the application and adjust their
requirements as needed.

� An important area where testers contribute is helping customers ex-
press satisfaction conditions and create examples of desired, and un-
desired, behavior for each story.

� Ask open-ended questions to help the customer think of all of the de-
sired functionality and to prevent hiding important assumptions.

� Help the customers achieve consensus on desired behavior for stories
that accommodate the various viewpoints of different parts of the
business.

� Help customers develop tools (e.g., a story checklist) to express infor-
mation such as business satisfaction conditions.

� The development and customer teams should think through all of the
parts of the application that a given story affects, keeping the overall
system functionality in mind.

Part IV, “Test Auto-
mation,” will guide
you as you de-
velop an automa-
tion strategy.

SUMMARY 151

� Work with your team to break feature sets into small, manageable sto-
ries and paths within stories.

� Follow a pattern of “write test—write code—run tests—learn” in a
step-by-step manner, building on each pass through the functionality.

� Use tests and examples to mitigate risks of missing functionality or
losing sight of the big picture.

� Driving coding with business-facing tests makes the development team
constantly aware of the need to implement a testable application.

� Business-facing tests that support the team must be automated for
quick and easy feedback so that teams can deliver value in short
iterations.

This page intentionally left blank

153

Chapter 9

TOOLKIT FOR BUSINESS-FACING
TESTS THAT SUPPORT THE TEAM

In the previous chapter, we talked about how to approach business or functional
testing to support the team in its effort to build the right software. In this chap-
ter, we’ll examine some of the tools you can use to help your team succeed with
Quadrant 2 tests.

BUSINESS-FACING TEST TOOL STRATEGY

How do we capture the business-facing tests that help the programmers know
what to code? Face-to-face conversations between programmers and custom-
ers are usually the best way, but even when customers are part of your team,
they don’t have all day to hang out with programmers and explain features.
If any customer or developer team members are in different locations, im-
promptu hallway conversations might not be feasible. Besides, six months

Toolkit for
Business-Facing

Tests that
Support the Team

Checklists

Mind maps

Spreadsheets

Mock-Ups

Flow Diagrams

Software-Based Tools

Below the GUI/API

Using the GUI

Home-Brewed Frameworks

Code Design and Test

Automated vs. Manual Tests
Testability

Tools to Elicit
Examples and
Requirements

Business-Facing Tool Strategy Introduction
Test Management

Tools for Automating
Tests Based on Examples

Strategies for
Writing Tests

Build Tests Incrementally

Keep the Tests Passing

Design Patterns

Keyword and Data-Driven Tests

154 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

from now, we might want a way to remember why we coded a piece of func-
tionality a certain way. If some of our team members are in different locations,
we’re definitely going to need some way to share information electronically.

As agile development has gained in popularity, we have more and more tools
to help us capture examples and use them to write executable tests. The tools
available are changing too fast for us to include an inventory of them in this
book, but we can offer some examples of tools and some strategies for using
them to help provide business-facing tests that support the team’s develop-
ment of new stories. Some of the tools we discuss here aren’t new, or specific
to agile development, but they work well in an agile project.

Your strategy for selecting the tools you need should be based on your team’s
skill set, the technology your application uses, your team’s automation prior-
ities, time and budget constraints, and other concerns unique to your situa-
tion. Your selection of a tool or tools should not be based on the latest and
coolest tool offered by a salesman. You might need many different tools to
solve different problems.

We encourage customers to do some advance preparation and to be ready to
explain examples for each story during iteration planning. Testers are in a good
position to help customers figure out how to provide the right amount of detail
at the beginning of the iteration. It’s hard to strike just the right balance.

Soon after our team chose to use FitNesse for specifying and automating business-
facing tests, our product owner and I tried to make good use of the new tool. We
had an extremely complex epic coming up. We spent many hours writing detailed
test cases for highly complex business rules weeks in advance of the iteration
where the first story of the epic was started. We felt good about getting a running
start on developing the new functionality.

When they started working on these stories, the programmers complained that they
couldn’t get the big picture from these detailed tests. The tests were also designed
in a way that was incompatible with the actual code design. I ended up spending
hours refactoring them. It wasn’t a complete waste of time, because at least I under-
stood the stories well and we had a number of test cases we could use eventually,
but it wasn’t the right approach for our team. Trial and error has shown us that high-
level tests combined with a few examples of desired and undesired behavior are
the best way for the programmers to know what to start coding.

—Lisa

For more informa-
tion about a gen-
eral approach to
test automation,
see Chapter 14,
“An Agile Test
Automation
Strategy.”

Lisa’s Story

TOOLS TO ELICIT EXAMPLES AND REQUIREMENTS 155

Experiment with different levels of up-front detail in test cases to figure out
what works best for your team. Whatever level of detail you’re after, you need
some way to help customers find and express examples of desired system be-
havior. In the next section, we look at the types of tools that can do that.

TOOLS TO ELICIT EXAMPLES AND REQUIREMENTS

As we pointed out in Chapter 8, stories are only a starting place for a pro-
longed conversation about the desired behavior. Having correctly sized sto-
ries where the feature, user, and purpose are clearly stated gives us a head
start. They aren’t very detailed, because as Mike Cohn [2004] points out, it’s
best to defer collecting details until the story is included in an iteration. Col-
lecting details for a story that might never be included is a waste of resources.
We like the “role, function, business value” pattern for user stories that Mike
Cohn describes in User Stories Applied, as in:

As a (role), I want (function) so that (business value).

This format doesn’t work for everyone, so we encourage you to experiment
and see what works best in your situation. Regardless of how your user sto-
ries read, you need some way to flesh those stories out with examples and
business-facing tests that guide development.

One simple story can have a wide-ranging impact, not only on the applica-
tion, but across the organization, its clients, its associates, vendors, or part-
ners. If we change an API, we have to notify any customers or vendors who
might be using it. If we plan a UI change, we want, or might even be contrac-
tually obligated, to give a certain amount of advance notice to users. Stories
may affect legal concerns or impact external reporting. New features often
mean new or updated documentation. Of course, changed functionality is
likely to affect other parts of the system.

The software development team, including the testers, should help the cus-
tomer capture and communicate all of the requirements related to each story
or theme. Developing new features, only to be prevented from releasing them
for legal reasons or because a business partner wasn’t informed in time, is a
frustrating waste of time (just ask Lisa!). Lean development teaches us to
avoid waste while we develop software.

156 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

What tools can help us illustrate desired behavior with examples, brainstorm
potential implementations and ripple effects, and create requirements we can
turn into tests? Some examples are:

� Checklists
� Mind maps
� Spreadsheets
� Mock-ups
� Flow diagrams
� Software-based tools

The list includes a number of simple tools that aren’t unique to agile testing
but that shouldn’t be neglected. In agile development, simple solutions are
usually best. Let’s look at these in more detail.

Checklists

Checklists are one way for product owners to make sure they correctly assess
and communicate all of the aspects of a story. The product owner for Lisa’s
team, Steve Perkins, came up with his own “story checklist” to make sure he
and the stakeholders think through everything affected by the story. He cre-
ated a template on the team wiki for this purpose. The checklist specifies the
conditions of satisfaction—what the business needs from the story. It also in-
cludes impacts on existing functions such as the website, documents, admin-
istrative forms, account statements, and other components of the system and
the daily operation of the business. The checklist makes sure the team doesn’t
miss requirements such as data migration, notifications, legal considerations,
and communications to vendors and business partners because they forgot
to consider them. Figure 9-1 shows a sample story checklist.

Mind Maps

Mind maps are a simple but effective way to search out ideas that that might
not occur to you in a simple brainstorming session. Mind maps are diagrams
created to represent concepts, words, or ideas linked to a central key concept.
We used mind maps to organize this book.

It really doesn’t matter whether you purchase a tool such as the one we used
or draw on a whiteboard or a big piece of paper. The effect is the same. Mind
maps enable you to generate ideas and work in a way that is consistent with
the way you think about problems.

TOOLS TO ELICIT EXAMPLES AND REQUIREMENTS 157

Figure 9-1 Sample story checklist

158 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

How about an example? We’re discussing the story shown in Figure 9-2.

We gather around the whiteboard and start asking questions. Where should the
deleted items go? Should they be saved for later approval, or should they just
disappear? What should the screen look like after we delete an item? Figure 9-3
shows an example of the sort of mind map we might draw on a whiteboard.

Figure 9-2 Shopping cart delete story

Story PA-3

As a shopper on our site, I want to delete items

out of my shopping cart so I don’t purchase extra

items that I decide I don't want.

Figure 9-3 Example mind map for shopping cart delete story

TOOLS TO ELICIT EXAMPLES AND REQUIREMENTS 159

Spreadsheets

When possible, tools for specifying business-facing tests should fit well with
your business domain. For example, spreadsheets are widely used by finan-
cial services companies, so for a project in the financial services area it makes
sense to use spreadsheets to define examples of the functionality that a story
should deliver.

Customers can write a few high-level test cases to help round out a story prior
to the start of the iteration, possibly using some type of checklist. Some cus-
tomer teams simply write a couple of tests, maybe a happy path and a negative
test, on the back of each story card. Some write more detailed examples in
spreadsheets or whatever format they’re comfortable working with.

Steve Perkins, the product owner for Lisa’s team, often illustrates complex
calculations and algorithms in spreadsheets, which the team can turn into
tests later. Figure 9-4 shows one of his worksheets, which performs calcula-
tions on the input values to produce the values in the ADR and ACR col-
umns. This format is easy to get into an automated test framework (refer to
Figure 9-8 for the corresponding FitNesse example).

Look at tools already used by your business experts and see whether they can
be adapted to document examples of desired feature behavior to help the de-
velopment team better understand the story.

Janet has worked with several teams that have used spreadsheets as input into
their Fit tests. This allows customers to work in a tool that is familiar to them
but not waste any effort in translating them to an automation tool.

Figure 9-4 Spreadsheet example from product owner

160 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Mock-Ups

Mock-ups can take many forms. Paper prototypes are a simple but effective
way to test how screens will work together. Drawing on a whiteboard can ac-
complish the same goal, but it can’t be passed around. Screenshots from ex-
isting applications can form the basis of a discussion about how to add a new
feature and where it will fit into the UI. You may have used tools like these in
other development methodologies. The big difference in agile development
is that we create and discuss the mock-ups just as we’re about to start writing
the code, rather than weeks or months beforehand. We can be confident that
the mock-up represents what the customers want right now.

We use simple approaches to creating mock-ups so that we aren’t tempted to in-
vest time coding before we’re finished working through the mock-up. Often, we
draw a UI or workflow on the whiteboard and then take photos of it to upload to
our team wiki so our remote team member can also see it. At other times, a cus-
tomer or our product owner draws the mock-up on paper or modifies an existing
UI page or report to show what should be added and changed. The paper mock-
ups are scanned in and posted on the wiki.

A picture’s worth a thousand words, even in agile software development. Mock-
ups show the customer’s desires more clearly than a narrative possibly could. They
provide a good focal point for discussing desired code behavior.

—Lisa

Figure 9-5 shows an example of a mock-up that Lisa’s team used to mock up
a new report—simply by marking up an existing report that’s similar.

Mock-ups don’t need to be fancy or pretty, or to take a lot of time to create.
They do need to be understandable to both the customer and developer
teams.

Flow Diagrams

Simple diagramming tools are helpful, whether the team is co-located or not.
It’s often a good idea to capture in a more permanent form a workflow or de-
cision tree worked out during a discussion. Flow diagrams can become the
basis of a user scenario that might help you tie two or three user stories to-
gether. Let’s look at the shipping order story again that we introduced in
Chapter 8 (see Figure 9-6).

See Chapter 8 for
Gerard Meszaros’
description of
using paper proto-
types and Wizard
of Oz testing.

Lisa’s Story

TOOLS TO ELICIT EXAMPLES AND REQUIREMENTS 161

Figure 9-5 Sample report mock-up

Figure 9-6 Story for shipping charges

Story PA-1

As an Internet shopper on LotsO'Stuff.xx,

I want free shipping when my order exceeds the free

shipping threshold, so that I can take advantage

of ordering more at one time.

162 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Figure 9-7 shows a very simple flowchart of a decision process for whether a
customer’s order is eligible for free shipping based on a threshold order
amount. Because we’ve discussed this story with our customer, we’ve found
out that the customer’s order must not only exceed a threshold dollar
amount but also must be to one address only, and it must weigh less than a
shipping weight threshold. If all of these conditions are satisfied, the cus-
tomer’s order will ship free; otherwise, the customer will have to select from
the “choose shipping options” page.

Order Total >
Free Shipping

Threshold?

Ship to One
Address?

Order Weight <
Max Shipping
Threshold?

Yes

Yes

Check-Out

Check-Out

Yes

Shipping Options
Page

No

No

No

Figure 9-7 Flow chart for qualifying for free shipping option

TOOLS TO ELICIT EXAMPLES AND REQUIREMENTS 163

Visuals such as flow diagrams and mind maps are good ways to describe an
overview of a story’s functionality, especially if they’re drawn by a group of
customers, programmers, and testers. In agile development, we create these
diagrams as we’re about to start writing tests and code. From these, the team
can immediately start digging down to the detailed requirements.

Software-Based Tools

If we’re in a different location than our customers, we need tools to help us
converse with them. Distributed teams tell us that desktop sharing is the num-
ber one tool that helps them deal with working in separate locations. Windows
NetMeeting and VNC are examples of tools that let two team members in dif-
ferent locations pair-test. Video conferencing tools such as WebEx and Skype
enable collaboration and demos between remote teams and customers. Online
whiteboards such as Scriblink and interactive whiteboard tools such as Mimeo
facilitate distributed whiteboard discussions.

More tools that are geared for direct use by product owners and business ex-
perts are becoming available, and many teams develop their own. Tools such
as Fit (Framework for Integrated Tests) and FitNesse were designed to facili-
tate collaboration and communication between the customer and develop-
ment teams. We’re hearing about more teams where the customers actually
write the tests in a tool such as those.

Some teams build their own frameworks that allow customers, business
analysts, and testers to document examples that can be directly turned into
executable tests. These are often based on open source tools such as xUnit,
Fit, Selenium, and Watir. We like this approach, because it saves time and

Notes from a Distributed Team
Pierre Veragen and Erika Boyer of iLevel by Weyerhaeuser told us that every
iteration begins with everyone on the team writing acceptance tests. That’s
how they start their iteration planning. Most interesting is the fact that their
product owners, who are mechanical engineers, write FitNesse tests them-
selves. Pierre explains that an advantage of a tool such as FitNesse is the abil-
ity to use their own domain language in the FitNesse tests. It doesn’t matter
what they end up choosing as a UI. They can test all of their complex calcula-
tions in the tests.

With this process, tests can be written before writing the testing code or the
system under test. It’s true test-driven development. Behavior changes and
bug fixes can follow.

164 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

resources. When you’re delivering production-ready code in short itera-
tions, you need a streamlined process.

Online forum tools are a good alternative to email conversations for ongoing
discussions about features or technical concerns, especially for teams that
don’t all sit together. Emails often get missed or lost, people have to remem-
ber to choose “Reply all,” and it can be hard to put together the details of the
discussion later. Lisa’s team uses an online forum to elicit opinions about dif-
ferent tools, propose different behavior for features, and conduct philosoph-
ical discussions such as whether to track defects.

Finding the right electronic tools is particularly vital for distributed teams.
Instant messaging, the telephone, VoIP, and Skype help us communicate, but
they lack the visual component. Some global teams ask their members to
meet at nonstandard hours so that they can have real-time conversations, but
frameworks for written and visual communication are still critical.

Wikis are a common tool used to enhance communication and record dis-
cussions and decisions. Wikis enable users to edit web page content in a web
browser. Users can add hyperlinks and easily create new pages. You can up-
load mock-ups, samples, and pictures of whiteboard drawings and make
them easily visible on Wiki pages. The hierarchical organization can get
tricky to maintain, but there are lots of open source and vendor wiki software
packages available that make managing your knowledgebase and sharing in-
formation easier to administer. If your wiki knowledgebase has grown to the
point where it’s hard to find anything, hire a technical writer to transform it
into organized, usable documentation.

Open source and commercial tools provide ways to let teams collaborate on re-
quirements and test cases online. We can’t emphasize enough the need for you
to identify tools that might be helpful, to experiment with them for a few itera-
tions, and to decide how well they work for you. Your team’s needs will change
with time, so always be open to trying new techniques and frameworks.

These tools help create the conversation about the story. With these tech-
niques, and as much real-time conversation and visual sharing as we can
manage, we can define the right product from the get-go.

TOOLS FOR AUTOMATING TESTS BASED ON EXAMPLES

What about test tools? We like the collaboration inherent with tools such as
Fit and FitNesse. However, in our opinion, any tool that gets testers and pro-

TOOLS FOR AUTOMATING TESTS BASED ON EXAMPLES 165

grammers, programmers and customers, and testers and customers talking is
a great one. We know teams where customers actually write tests in Fit, Fit-
Nesse, Expect, or other tools. This works when the tool has been set up in a
manner that’s clear to everyone writing tests, with the domain language easy
to understand and the appropriate fixtures provided.

Tools to Test below the GUI and API Level

There are a multitude of open source tools that enable you to test below the
GUI or at the API layer. We are listing just a few, but your team will need to
determine the right tool for you.

Unit-Level Test Tools

Some teams use the xUnit tools such as JUnit or NUnit for business-facing
tests as well as technology-facing tests. If the testers and customers are com-
fortable with these tools, and they provide for all of the functional testing be-
hind the GUI needed, they’re fine. To make these tools more customer-
friendly, teams might build a framework on top of the unit-level tools that
testers and customers can use to specify tests.

Janet has worked on a couple of applications like that. One was a message
handling system that was being deployed in an organization. The program-
mers used JUnit for all of the component and integration testing. They built
a load test framework that could make use of the JUnit tests, so no other test-
ing tools were needed. The GUI front end was so small that Janet was able to
test it manually. It made no sense to automate the GUI testing in this case.

Behavior-driven development (BDD) tools are also suited to this purpose,
because they use a more natural language for specifying the tests. Behavior-
driven development is a variation of test-driven development, pioneered by
Dan North [2006], and evolved by many others. It’s related to domain-driven
design, with a focus on the domain rather than on the technology, and driv-
ing design with a model. Instead of the word “test” or “assert,” BDD uses the
word “should.” By thinking in terms of behavior, it’s natural to write specifi-
cations ahead of code. Test specifications use a domain-specific language to
provide tests that customers can read but that can also be easily automated.

Some of the many BDD tools available as of this writing include easyb and
JBehave for the Java platform, NBehave and NSpec for .NET, and RSpec for
Ruby. These tools, like the XUnit tools, are intended for use by programmers to
guide coding, but they can also be used to express business-facing tests that drive
development, involving customers more closely in the development process.

166 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Behavior-Driven Development
Andrew Glover, president of Stelligent Incorporated and author of books
including Continuous Integration and Java Testing Patterns, explains the think-
ing behind one of the BDD tools, easyb.

assertEquals(42.50, order.price(), 0.0). Without examining the
context in which this statement appears, this code is somewhat incom-
prehensible. Now imagine you don’t even read code—that is, you are a
stakeholder asking (actually paying) for new features. The previous code
statement might as well be Farsi (assuming you can’t actually read Farsi!).

order.price().shouldBe 42.50. While the context in which this state-
ment appears is still absent, this line of code is a bit more coherent. In
fact, it reads like a normal sentence (and this time knowledge of Farsi
isn’t required!). Stakeholders, in this case, could understand this code if
they chose to read it; on top of that, it turns out that this line of code
essentially matches what they asked for in the first place. This line of
code describes behavior in a more literal manner too—the code uses a
normal everyday phrase like shouldBe, which is distinctly different than
the previously written assertEquals.

Both lines of code from the previous paragraphs convey the same mean-
ing and indeed validate the same requirement, yet the latter one comes
awfully close to leveraging the customer’s language. This is a fundamental
point of the notion of behavior-driven development, which strives to
more appropriately validate a software system by thinking in terms of the
term “should” rather than test. In fact, by focusing on behavior and
closely modeling behavior after what stakeholders ask for, behavior-
driven development converges on the idea of executable documenta-
tion. Indeed, through leveraging a stakeholder’s language, there is a de-
creased impedance mismatch between what he wants and what he
ultimately receives; moreover, employing a stakeholder’s language facili-
tates a deeper level of collaboration between all parties. Listen to how a
conversation might go:

Stakeholder: For the next release of our online store, our Gold-
level customers should receive a discount when they make a pur-
chase.

Developer: What kind of discount—what criteria do they have to
meet in order to receive it?

Stakeholder: When they have at least $50 dollars in their shopping
cart.

Developer: Does the discount increase based upon the amount, or
is it fixed regardless of the value of the shopping cart?

Stakeholder: Good question—the discount is fixed at 15% regardless
of price. So, given a Gold-level customer, when the shopping cart
totals $50 or more, it should receive a 15% discount off the total price.

TOOLS FOR AUTOMATING TESTS BASED ON EXAMPLES 167

The last statement of the stakeholder is key—note how the requirement
has been specified and the means for validating it. In fact, the stake-
holder has essentially narrated a specific scenario in a larger story related
to discounts.

Given this scenario, a developer can take the stakeholder’s comments—
word for word—and execute them. For example, one behavior-driven
development framework, dubbed easyb, facilitates system validation
through a domain-specific language that supports stories and scenarios.
For example:

scenario “Gold-level customer with $50 in shopping cart”, {
 given “ a Gold-level customer”
 when “their shopping cart totals $50 or more”
 then “ they should receive a 15% discount off the total price”
}

Of course, this particular scenario doesn’t actually do anything (other
than capturing the stakeholder’s requirements, which is still quite im-
portant!); consequently, it is considered pending. This status alone
conveys valuable information—stakeholders can, first and foremost,
see their words as a means to validate their requests, and secondly,
gauge if their requirement has been fulfilled. After this scenario has
been implemented, it can, of course, take on two other states—suc-
cess or failure, both of which serve to convey further status information
to interested parties.

Now, with a collaborative scenario defined, development can proceed
to the implementation—the beauty in this case is that they can directly
implement the desired behavior inline with the requirements, like this:

scenario "Gold-level customer with $50 in shopping cart", {
 given "a Gold-level customer", {
 customer = new GoldCustomer()
 }
 when "their shopping cart totals $50 or more", {
 customer.shoppingCart << new Item("widget", 50.00)
 }
 then "they should receive a 15% discount off the total price" , {
 customer.orderPrice.shouldBe 42.50
 }
}

This scenario is now executable within the context of the application it
serves to validate! The scenario leverages the customer’s exact words, too;
what’s more, regardless of the customer’s ability to read code, the code it-
self leverages natural language: customer.orderPrice.shouldBe 42.50.

168 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

The goal of business-facing tests that support the team is to promote com-
munication and collaboration between customers and developers, and to en-
able teams to deliver real value in each iteration. Some teams do this best
with unit-level tools, and others adapt better to functional-level test tools.

API-Layer Functional Test Tools

Before Lisa joined her first agile team, testing “behind the GUI” was a con-
cept that sounded good, but she’d never had the opportunity to try it. Fit,
and FitNesse, which is built on top of Fit, are functional test tools that grew
from the need for the customer team to be able to write and understand the
business-facing tests that drive development. With these tools, teams can test
business logic without involving the presentation layer.

Fit and FitNesse. Fit (Framework for Integrated Tests) is an open source
testing framework that promotes collaboration, which makes it a good tool
to help refine requirements. The invention of Ward Cunningham, Fit has en-
joyed an illustrious roster of contributing developers. Fit enables customers,
testers, and programmers to use examples to specify what they expect the
system to do. When the tests run, Fit automatically compares customers’ ex-
pectations to actual results.

With Fit, customers can provide guidance using their subject matter exper-
tise to define the examples that the programmers can code against. The pro-
grammers participate by writing the fixtures that do the actual checks against
the examples. These fixtures use the data specified in the examples to run
with the actual program.

Fit tests are automated by fixtures that pass the test inputs to the production
code and then accept the outputs, which it then compares with expected re-
sults. The test results are color-coded, so it’s easy to spot a failure or exception.

By leveraging the customer’s language, the customer has the ability to
collaboratively facilitate in validating the system he or she wants built.
Also, with development leveraging the stakeholders’ language, there is a
direct link between what stakeholders ask for and what they receive.
And you don’t even need to understand Farsi to see the benefit in that.

Two of the most common questions we’re asked by new agile teams are,
“What about documentation?” and “How can test automation keep up with
development in two-week iterations?” Tools such as easyb answer that ques-
tion with executable documentation using a domain-specific language that
everyone on both the customer and developer teams understands.

TOOLS FOR AUTOMATING TESTS BASED ON EXAMPLES 169

Fit tests are written as HTML tables, but teams can customize Fit so that tests
can be written in spreadsheets or whatever form the customers, testers, and
analysts find usable.

FitNesse is a web server, a wiki, and a software testing tool that is based on
Fit. Originally developed by Robert C. “Uncle Bob” Martin and Micah Mar-
tin, it’s an open source tool with an active developer community. The main
difference between FitNesse and Fit is that FitNesse tests are written in wiki
markup instead of HTML tables, which some users find easier. It also sup-
ports creating tests in spreadsheets and importing those into the tests.

Figure 9-8 shows part of the FitNesse test that was built from the example in
Figure 9-4. More inputs were added to make the production code run, but
the essential test data is from the spreadsheet. The test results are color-coded
green when they pass, red when they fail.

Another benefit of a Fit or FitNesse type of tool is that it promotes collabora-
tion among different team members in order to come up with the right tests

Learn more about
Fit at fit.c2.com.

Learn more about
FitNesse at
www.fitnesse.org.

Figure 9-8 Automated FitNesse test from customer example

170 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

to guide development. Customers, programmers, testers, and others work to-
gether to specify and automate the tests.

Testing Web Services. Web services is just another form of an API that en-
ables other applications to access your application. Let’s talk about some of
the tools you can use to test various inputs into your system.

CrossCheck. CrossCheck is one example of a tool for testing web ser-
vices. You supply the WSDL (Web Services Description Language);
CrossCheck compiles the page and then presents you with a tabbed
menu that contains textboxes for you to fill in. It has a Run mode where
you can add your tests to a suite and then run the suite. Neither Lisa or
Janet have tried this tool, but it was noted on the Yahoo agile-testing
group as a tool to use for testing web services if you were running the
same data through each time.

Ruby Test::Unit. One project Janet was on used Ruby’s unit testing
framework, Test::Unit, to test web services, with great success. In fact, the
team was able to test early to give the programmers immediate feedback,
which helped with the final design.

soapUI. Another tool suggested for testing web services is soapUI. It has
a steep learning curve but can be used for performance and load testing.
Because it can loop though rows in an Excel spreadsheet or text file, it
can be used for data-driven testing.

Tests that work at the layers below the presentation layer are well suited for
writing and automating customer tests that guide coding. Some practitioners
haven’t gotten the value they expected from story test-driven development.
Brian Marick [2008] hypothesized that an application built with program-
mer test-driven development, example-heavy business-facing design that re-
lies heavily on whiteboard discussions, a small set of automated sanity tests,
and lots of exploratory testing could be a less expensive and equally effective
approach. Whichever approach you take, if you’re testing an application with
a user interface, you’ll need some automation at the GUI level.

Tools for Testing through the GUI

Wait a minute. How can we use GUI tests to drive development, because the
GUI won’t be ready until the story is complete? It sound counterintuitive,
but automated GUI tests are important to help us while we’re developing
new functionality. Test frameworks can be used to specify test cases for a GUI
tool before the code is written. In addition, you can automate GUI tests be-

See the ”System
Test” example
in Chapter 12,
“Summary of Test-
ing Quadrants,” to
see how Janet’s
team used Ruby
Test::Unit to test
web services.

TOOLS FOR AUTOMATING TESTS BASED ON EXAMPLES 171

fore coding is finished, either by using HTML mock-ups or by developing
an end-to-end bare-bones slice through all of the screens that simply navi-
gates but doesn’t provide all of the functionality yet. Even if you’re not using
a lot of automated story tests to drive development, manual exploratory
testing that helps us learn about the functionality and provides immediate
feedback gets pretty tedious and slow without any assistance from automa-
tion. Let’s look at the types of GUI test tools that help drive development us-
ing business-facing tests.

Record/Playback Tools

Record/playback tools are appealing because you can usually learn how to
record a script and play it back quickly, and you can create lots of scripts in a
short time. However, they have drawbacks. Early GUI test tools recorded
mouse movements using X-Y screen coordinates. Scripts using those tools
might also be sensitive to changes in screen resolution, color depth, and even
where the window is placed on the screen.

A Tool Selection Rationale
David Reed, a test automation engineer, and his team went with soapUI Pro
to automate testing for their web services. Here are some reasons he gave for
choosing this particular tool.

• It has an open source version, so you can try it out it for free. You
can learn it, kick the tires, expand stuff, and learn its strengths and
weaknesses.

• It was easy to figure out what requests to make for what service.

• The assertions provided for verifying the results from requests are great
and expandable. One really helpful one is verifying that the response
comes back in an acceptable amount of time, raising an error if it
doesn’t.

• The Pro version takes a lot of the hassle out of designing XPath queries
to verify results. It also adds some nice touches for retrieving database
data.

• It’s expandable with Groovy, a Java-based scripting language. (They’re
working on a Java application, so it pays to have Java-friendly tools.)

• Developers can use it without sneering at it as a “test tool.”

• It’s easily integrated with our continuous integration environment.

• It has a feature to check code coverage.

• The price is right.

172 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Most modern GUI test tools use objects to recognize the controls in a graph-
ical application, like buttons, menus, and text input widgets, so they can refer
to them symbolically rather than with raw screen coordinates. This makes
the application much more testable, because it’s more robust standing up to
changes. A button might move to a different part of the screen, but the test
can still find it based on its object name.

Even with improved object recognition, scripts created with record/playback
are usually brittle and expensive to maintain. Recording can be a good way to
start creating a script. Testers or programmers who know the tool’s scripting
language can refactor the recorded script into an object-oriented model that’s
easier to use and maintain. Historically, record/playback tools used propri-
etary scripting languages, which programmers aren’t interested in learning.
It’s also more difficult to change the design patterns used in the tests.

Some script-based tools such as the ones we’ll talk about in the next few sec-
tions offer a record feature to help people get a quick start on writing the test
script. However, with those tools, the recorded scripts aren’t intended for
straight playback; they’re just a starting point to creating a well-designed and
easily maintained suite of tests.

Many agile teams prefer tools and scripting languages that let them create their
own domain-specific language (DSL). This makes tests much easier for busi-
ness experts to understand and even write. Let’s look at some of these next.

Agile Open Source Test Tools

Each of the tools in this section was originally written by an agile develop-
ment team that needed a GUI test tool and couldn’t find any third-party
tools that worked for its situation. With these tools, you can write scripts that
use web applications just like a human user. They fill in text fields, select
from lists, and click checkboxes and buttons. They provide a variety of ways
to verify correct navigation and contents of pages, such as tool-specific verify
steps or XPath. Some of these tools have a higher learning curve than simple
record/playback tools, but the extra investment of time usually pays off in
scripts with a low total cost of ownership.

Ruby with Watir. Watir (Web Application Testing in Ruby) is a simple open
source Ruby library for automating web browsers that works with Internet
Explorer on Windows. There are different flavors for other browsers, includ-
ing FireWatir for Firefox and SafariWatir for Safari.

TOOLS FOR AUTOMATING TESTS BASED ON EXAMPLES 173

I worked on a project that developed a three-layer test framework using Ruby and
Watir. The first layer was a common set of libraries, and the second layer was to ac-
cess the pages and provide navigation. The third and top layer created a domain
language using fixture-type methods that mapped to the business needs. This al-
lowed the manual testers to write high-level automated tests for workflows before
coding was completed. If a fixture didn’t exist because of new functionality, the test
could be created and the action word for the missing fixture could be “dummied”
in. As soon as the fixture was coded, the test could be run as an acceptance test.

A very simple example of using Ruby with Watir incorporates the idea of DSL.
Methods were created to simplify the tests so that any of the testers could actually
create an automated script without knowing any Ruby or Watir.

This next example shows a test, and then two of the methods used in the test.

def test_create_new_user

 login 'administrator','admin'
 navigate_to_tab 'Manage Users'
 click_button "Create New User"
 set_text_field "userFirstNameInput", "Ruby"
 set_text_field "userLastNameInput", "RubyTester"
 click_button "Save Changes"
 verify_text “Saved changes”
end

methods created to support easier test writing
def navigate_to_tab(menuItemName)
 @browser.link(:text,menuItemName).click
 end

def set_text_field(id, value)
 @browser.text_field(:id,id).set value
 end

A third level could easily be added if create_new_user was called more than
once. Just extract the common code that the test could call:

create_new_user (Ruby, RubyTester)

These tests were well suited to guiding development and providing quick feed-
back. Making tests easy for testers and customers to write, while keeping the au-
tomation framework designed for optimum maintainability, reduced the total cost
of ownership of the tests.

—Janet

There are always drawbacks to any tool you use. For example, there are limi-
tations to using objects. Sometimes programmers use custom controls or a
new toolkit that your tool might not understand.

Janet’s Story

174 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

I started a new job as QA manager, and after much deliberation we decided to
drop the vendor tool that the team had been using for a couple of years. We
could not figure out what tests were actually being run, or what the real coverage
was. We decided to start automating the tests using Ruby and Watir. The automa-
tion went fairly quickly at first, but then the tests started failing. We spent a lot of
time changing the tests to reflect new object names. The developers were just us-
ing the default WebLogic object names, which would change every time a new
object was added to the page. The testers went to the developers to ask if they
could change the way they were coding. It took a little convincing, but when the
developers realized the problems their practice was causing, they changed their
habits. Over time, all of the defaults were changed, and each object had an as-
signed name. The tests became much more robust, and we spent much less time
in maintenance mode.

—Janet

Implementing a new test automation tool usually requires some experimen-
tation to get a good balance of testable code and well-designed test scripts.
Involving the whole team makes this much easier. Watir is one example of a
GUI test tool that we’ve found is well suited to agile projects. Let’s look at a
couple more, Selenium and Canoo WebTest.

Selenium. Selenium is another open source tool, actually a suite of tools, for
testing web applications. The tests can be written as HTML tables or coded in a
number of popular programming languages, and can be run directly in most
modern web browsers. A Firefox plug-in called “Selenium IDE” provides a way
to learn the tool quickly. A recorder is provided to help create the tests, includ-
ing writing assertions. Tests can be written in several different common pro-
gramming and scripting languages, including Java, C#, and Ruby.

Canoo WebTest. In WebTest scripts, tests are specified as “steps” in XML
files, simulating a user’s actions through a web UI. Here’s an example of how
a WebTest script might invoke a page and verify the results:

<setInputField description="set query" name="q" value="Agile Tester"/>
<clickButton description="submit query" label="Google Search"/>
<verifyText description="check for result" text="Lisa Crispin" />
<verifyText description="check for result" text="Janet Gregory" />

Rather than driving an actual browser, as Selenium and Watir do, WebTest
simulates the desired browser using HtmlUnit. The advantage of specifying
tests as opposed to coding test scripts, is because there’s no logic in them, you
don’t have to test the test.

Janet’s Story

See Chapter 14,
“An Agile Test
Automation
Strategy,” for an
example of using
Selenium RC to
create a domain-
specific test auto-
mation framework.

TOOLS FOR AUTOMATING TESTS BASED ON EXAMPLES 175

My team chose WebTest to automate smoke tests for our legacy application for
several reasons. Because the scripts are written in XML, the programmers on the
team were comfortable using the tool. It uses Ant to run the tests, so integrating it
into the continuous build process was simple. It’s easy to learn, and the tests can
be designed in a modular fashion, so they’re fairly easy to maintain. WebTest sup-
ports testing PDF files, emails, and Excel files, all of which are widely used in our
application.

Being accustomed to powerful commercial test tools, I was skeptical of the con-
cept of specifying tests, as opposed to programming them. I was amazed at how
effective the simple tests were at catching regression bugs. It’s possible to put
logic into the tests using Groovy or other scripting languages, but we’ve only
found the need in a few cases.

Writing a few tests per iteration, I automated smoke tests for all of the critical areas
of our application in eight months. These simple tests find regression bugs regu-
larly. We refactor the tests frequently, so they are relatively easy to maintain. Our
ROI on these tests has been tremendous.

—Lisa

Selenium, WebTest, and Watir are just three examples of the many open
source tools available for GUI testing as of the time we wrote this book.
Many teams write their own test automation frameworks. Let’s look at an ex-
ample in the next section.

“Home-Brewed” Test Automation Tools

Bret Pettichord [2004] coined the term “home-brewed” for the tools agile
teams create to meet their own unique testing needs. This allows even more
customization than an open source tool. The goal of these tools is usually to
provide a way for nontechnical customer team members and testers to write
tests that are actually executable by the automated tool. Home-brewed tools
are tailored to the exact needs of the project. They can be designed to mini-
mize the total cost of ownership. They’re often built on top of existing open
source tools.

Janet has been involved in a few projects that have used Ruby and Watir to
create a full framework for functional testing. These frameworks allowed cus-
tomers to specify tests that were then turned into a functional regression suite.

No test tool guarantees success. In fact, the history of test automation is lit-
tered with failed attempts. Having the whole team think about the best tools
to use is a big help, but no matter what tool you use, you need a smart ap-
proach to writing tests. We’ll discuss that in the next section.

Lisa’s Story

176 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

PAS Functional Testing
This next story is about one project Janet worked on that enjoyed success
with home-brewed test automation.

PAS is a production accounting application for the oil and gas industry. Using
gross meter readings and contract agreements, it must calculate ownership of
the various products down to a very precise level (i.e., the components in
gas). There are literally thousands of interactions between the combinations
available in configuring the system and the actual outputs visible to a user.
Given the large number of interactions, PAS has employed many complemen-
tary strategies for testing.

Joseph King, one of the initial programmers and agile coach for the team,
tells us the story of how they accomplished their functional testing.

At the lowest level, there are developer functional tests that exercise
specific functions via an API and verify the results using another read-only
user API. There are currently over 24,000 tests implemented in JUnit that
every developer must run before they can ”check in” their changes to
the source code.

The next level is a set of GUI tests that test the marshalling of user data
back and forth to the API, particularly around ”master-data” creation and
updates. There are currently over 500 of these tests implemented using
Watij (an open source library similar to Watir but using Java) and JUnit
that run multiple times a day.

The final level of testing is a set of integration tests created by the users
that run in a Fit-like harness. Users identify dense test cases that reflect
real-world cases covering many of the functions that work together to
produce financial and regulatory outputs. These test cases are then tran-
scribed into import templates and then processed using a domain lan-
guage that mirrors the way end customers think about their processes.

For example, after an end customer has created the configuration of fa-
cilities and contracts they wish to exercise in their test, they work with
a developer to use the domain language to process their facilities in
the correct order. The end users also supply a set of expected outputs
that are then verified using a read-only API. These outputs can contain
thousands of numbers, any of which can change for seemingly minor
reasons in an evolving product. It is a constant challenge to sort
through what is a legitimate business change from what is a defect.
There are currently over 400 integration tests, and they run twice per
day, providing feedback to the end customers and developers.

Exploratory testing is done continuously throughout the development
cycle and is augmented at the end of releases.

Our first attempt at PASFIT (which is what we called the functional test
framework) was a spreadsheet of color-coded inputs and outputs. We

STRATEGIES FOR WRITING TESTS 177

STRATEGIES FOR WRITING TESTS

The best tools in the world won’t help if you don’t use them wisely. Test tools
might make it very easy to specify tests, but whether you’re specifying the
right tests at the right time is up to you. Lisa’s team found that too much de-
tail up front clouded the big picture to such a degree that the programmers
didn’t know what to code. This won’t be true for every team, and at some
point we do need details. The latest time to provide them is when a program-
mer picks up a coding task card and starts working on a story.

then generated Java code based on the color of the cells to create the
data in PAS. That proved difficult to maintain, partly because the applica-
tion was in major flux both at the GUI and database level.

Our next iteration of PASFIT didn’t evolve for nearly a year after the previ-
ous attempt. After we had a more stable set of database views and GUI,
we were able to create an engine that used simple imperative language
(i.e., a script) to do actions with arguments against a GUI (e.g., Go to Bal-
ancing Page, Balance Battery: Oil, Water). The script evolved into following
the thought process of a production accountant and became a domain-
specific language. The engine was written using Ruby and Watir, and an
instruction from the script was basically a Ruby method that was invoked
dynamically so that it was easy to update. After the script ran, the frame-
work then loaded a snapshot of the views that the test wished to com-
pare and did a simple row-by-row, cell-by-cell comparison of what was to
be asserted and what actually happened. Eventually this was enhanced in
the spreadsheet to use Pivot tables to enable the users to focus in on only
the results they wished to assert for their test. All in all it has been quite
successful, although the requirements for our application mean that 300
tests take about 12 hours to run, which is a long time.

Getting the business more involved in maintaining the regression tests
has also been difficult, but when it happens it is very good. Currently, we
have a stand-up where the business users and the developers meet for
15 minutes to pick up any of the scenario tests that are breaking that
day. It is quite effective in that people often know when they come to
the stand-up what they might have broken the day before. Future
enhancements are likely to include asserting against actual user reports
instead of the views and running a migration each night against the sce-
nario script.

PASFIT achieved a balance between letting business experts write tests in a
DSL and automating those tests with a highly complex application. Success
came with some trial and error. Teams that write their own test frameworks
need time to experiment to find the right solution for both the business and
the development team.

178 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Writing detailed test cases that communicate desired behavior effectively re-
quires both art and science. Poorly expressed scenarios and poorly designed
test cases can create more confusion than they resolve. Experiment so that
you can find the right level of detail and the right test design for each story.
Let’s look at some strategies to help you use tools successfully to write useful
business-facing tests.

Build Tests Incrementally

After we have defined our high-level acceptance tests so that the programmer
knows what to start coding, we can start elaborating on the rest of the story
tests. We can work closely with the programmer to ensure we automate the
best possible way.

When a programmer starts working on the programming tasks for a story,
start writing detailed tests. For those of us who enjoy testing, it’s tempting to
go for the biggest “smells” right away, the areas where we think the code might
be fragile. Resist the temptation. Make sure the most obvious use case is work-
ing first. Write a simple, happy path automated test to show the code accom-
plishes the most basic task that it should. After that test passes, you can start
getting more creative. Writing the business-facing tests is an iterative process.

I start writing executable business-facing tests that support the team by writing a
simple FitNesse test based on examples that the product owner provides. I show
this to the programmer working on the code. He can make suggestions for
changes right then, or he might modify the test himself as appropriate when he’s
ready to automate it. Discussing the test often leads the programmer to realize he
missed or misunderstood a requirement. We might need another three-way con-
versation with the customer. The programmer updates the code accordingly. We
can also show the test to the product owner to make sure we captured the be-
havior correctly.

After the simple test passes, I write more tests, covering more business rules. I
write some more complex tests, run them, and the programmer updates the code
or tests as needed. The story is filling out to deliver all of the desired value.

—Lisa

Confine each test to one business rule or condition. At some point you can
automate or manually perform more complex scenarios, but start by cover-
ing each condition with a simple test. If you’ve followed our recommended
thin slice or steel thread pattern, the first set of tests should prove the first

Lisa’s Story

Chapter 18, “Cod-
ing and Testing,”
goes into more
detail about how
testers and pro-
grammers work
together to test
and code.

STRATEGIES FOR WRITING TESTS 179

thin slice end-to-end. As your automated tests pass, add them to the regres-
sion suite that runs in a frequent build process.

Keep the Tests Passing

After a test passes, it shouldn’t fail unless the requirements were changed. If
that happens, the test should be updated before the code is altered. Of course,
if a test was forgotten as part of a requirement change, we expect it to fail. It
did its job as change detector. At this time, the test will likely need to change
to get it passing.

Whenever a test fails in a continuous integration and build process, the
team’s highest priority (other than a critical production problem) should be
to get the build passing again. Don’t comment out the failing test and fix it
later; that’s the road to perdition. Soon you’ll have dozens of commented-out
tests and a lot of technical debt. Everyone on the team should stop what
they’re doing and make sure the build goes “green” again. Determine if a bug
has been introduced, or if the test simply needs to be updated to accommo-
date intentionally changed behavior. Fix the problem, check it in, and make
sure all of the tests pass.

Early on in our agile efforts, my team wasn’t fixing broken tests fast enough. I
wrote “Tests are not temporary!” on the whiteboard to remind everyone that
once a test passes, it needs to keep passing. A few days later, the words “but
testers are!” had been added to get back at me. We did get much better at keep-
ing our builds “green” after that.

—Lisa

One passing test leads to another. Keep your tests current and maintainable
with refactoring. Extend them to cover other test cases. The various combi-
nations and scenarios might or might not become part of the regression suite
after they pass. We want our regression suite to run in a timely manner, and
having too many tests for edge cases would slow it down.

Use Appropriate Test Design Patterns

When designing tests, look at different patterns and choose the ones that
work for you. Keep them as simple as you can. Before you can design tests,
you have to identify the ones you need. Pierre Veragen coined the term test
genesis patterns to note the patterns that help you think of tests. Examples
and use cases feed into our test genesis patterns.

Lisa’s Story

180 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Build/Operate/Check

Lisa’s team often goes with a build/operate/check pattern: Build the input
data, in memory or actually in the database, depending on the purpose of the
test; invoke the production code to operate on those inputs; and check the re-
sults of that operation. Some teams call this setup/execute/validate. For exam-
ple, to test the invoice presented to a new account holder, set up the fees to be
charged, input the properties of the account that relate to fee amounts, run
the code that calculates the fees, and then check to see what fees were actually
charged. See Figure 9-9 for an example of a test that sets up a loan with a spec-
ified amount, interest rate, term, payment frequency, and service start date
and then checks the resulting amortization schedule. The test data is built in
memory, which makes for a speedy test. A “teardown” fixture (not shown) re-
moves the test data from memory so it won’t interfere with subsequent tests.

If there’s a need to test the application’s data access layer, tests can run using
an actual database. Each test can insert the test data it needs, operate on it,
check results, and delete the data. Testing with data in a real database can be a
means of automating a test against legacy code whose data access and busi-
ness logic layers aren’t easily separated.

Figure 9-9 Example test with build/operate/check pattern

STRATEGIES FOR WRITING TESTS 181

Notice that the “check” table in the example uses a declarative style, with
each row forming an independent test case, without changing the state of the
system. Each row in our example tests a line in the loan amortization sched-
ule. In the next section, we’ll look at patterns that are in a procedural style,
with steps that change or test the state of the system.

Time-Based, Activity, and Event Patterns

Sometimes a timeline-based procedural pattern reflects the business better.
For example, when testing a loan, we want to make sure interest and princi-
pal are applied correctly for each payment. The amount of interest depends
on the date the payment was received and the date of the last payment pro-
cessed. We want a test that simulates taking out a loan for a certain dollar
amount, interest rate, and time period, and then over time simulates the bor-
rower sending in payments, which are received and processed. Figure 9-10
shows a simple example of a FitLibrary “DoFixture” test that takes out a loan,
checks the payment amount, posts the borrower’s payments, receives the
payments and processes them, and then checks the interest, principal, and
loan balance amount. It also checks the loan default state.

Depending on the domain, a time- or event-based approach might simulate
the actual business processes better and be more understandable to business
experts than a declarative type test. Other customers might find the declara-
tive table style simpler to understand, because it hides the procedural details.
Different patterns work best for different situations, so experiment with them.

Figure 9-10 Sample time-based test

182 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

Learning More

Your team should educate itself on test patterns that help drive program-
ming. Finding the right pattern for each type of test ensures the test commu-
nicates clearly, is easy to maintain, and runs in an optimal amount of time.
See the bibliography for more invaluable resources on test design, such as
Gerard Meszaros’s xUnit Test Patterns: Refactoring Test Code.

Bring programmers and testers together to brainstorm test approaches and
to help decide what tests can be automated and how the code should be de-
signed to support testing. Business logic and algorithms should be accessible
by test fixtures, without having to go through a user interface or batch sched-
uling process. This enables test-driven development, which in turn produces
testable architecture.

A common approach to automating tests is by driving tests with keywords or
action words. This can be used with tools such as Fit and FitNesse, or Ruby
with Watir. We’ll explain this next.

Keyword and Data-Driven Tests

Data-driven testing is a tool that can help reduce test maintenance and en-
able you to share your test automation with manual testers. There are many
times when you want to run the same test code over and over, repeating only
the inputs and expected results. Spreadsheets or tables, such as those sup-
ported by Fit, are excellent ways to specify inputs. The test fixture, method,
or script can loop through each data value one at a time, matching expected
results to actual results. By using data-driven tests, you are actually using ex-
amples to show what the application is supposed to do.

Keyword-driven testing is another tool used in automated testing, where pre-
defined keywords are used to define actions. These actions correspond to a
process related to the application. It is the first step in creating a domain test-
ing language. These keywords (or action words) represent a very simple spec-
ification language that non-programmers can use to develop automated
tests. You still need programmers or technical automation specialists to im-
plement the fixtures that the action words act on. If these keywords are ex-
tended to emulate the domain language, customers and nontechnical testers
can specify tests that map to the workflow more easily.

The sample spreadsheet in Figure 9-11 shows how one company used action
words to automate their test setup. The same action words can be used to
test. The words Signup, Signoff, and CCDeposit are words that are domain-

TESTABILITY 183

specific. Their users could easily write tests without understanding the un-
derlying code.

Combining data-driven and keyword-driven testing techniques can be very
powerful. Fit and FitNesse use both keywords and data to drive tests. The other
tools we’ve described in this chapter can also accommodate this approach.

Any test strategy can run into trouble if the code isn’t designed to be easily
tested. Let’s take a look at testability concerns.

TESTABILITY

Business-facing tests built with appropriate design patterns and written ahead
of any coding help the team achieve a testable code design. The programmers

Figure 9-11 Sample test spreadsheet with action words

ScriptID Logging Environment Site Lang Email

8 ON STAGING Global English ON

Test ID Description ClassName Action Input 1 Input 2 Input 3 Input 4 Input 5

Signup Customer

123 Cdn
customer

Member Signup Janet Gregory Calgary 123 St T1T 2A2

123 Reg
complete

Member signoff TRUE

123 Log out Member Log_out TRUE

Perform CC Deposit

Setup Description ClassName Action Input 1 Input 2 Input 3 Input 4 Input 5

234 Log in mbr Member Login get.AcctId get.ID_greg get.pwd_

234 Submit CC
Txn

Member CCDeposit VISA 4444333322 02 2008 25.86

234 Member
Logout

Member log_out

END

184 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

start by looking at the business-facing tests, perhaps together with a tester, ana-
lyst, or customer, so that the need to execute those tests are always in their
minds as they proceed with their test-driven design. They can build so that the
tests provide inputs and control run-time conditions.

I ran into a snag when I was trying to automate some GUI workflow with Ruby
and Watir. The calendar pop-up feature was not recognized, and the data field
was read-only. I took my problem to one of the programmers. We paired to-
gether so that he could see the issue I was having. The first thing he did was to
understand the calendar feature. He thought it would be too difficult to auto-
mate the test, so he suggested another alternative. He created a new method
that would “fool” the input field so it would accept a date into the text field. We
knew the risk was no automation on the calendar, but for simplicity’s sake we
went with his option.

Not all code is testable using automation, but work with the programmers to find
alternative solutions to your problems.

—Janet

Let’s look at techniques that promote design of testable code.

Code Design and Test Design

In Chapter 7, “Technology-Facing Tests that Support the Team,” we explained
how test-driven development at the unit level ensures a testable architecture.
This is true for business-facing tests as well. The layered architecture Lisa’s
team designed works just as well for functional testing. Testing can be done
directly against the business logic without involving the user interface, and if
appropriate, without involving the database layer. This doesn’t mean that the
database layer doesn’t need to be tested. It still needs to be tested, just maybe
somewhere else.

Testability has to be considered when coding the presentation layer as well. GUI
test tools work better on well-designed code developed with good practices.

When I first started trying to automate GUI tests using Canoo WebTest, I discovered
that the HTML and JavaScript used in the system didn’t comply with standards and
contained many errors. WebTest and the tool it’s built on, HtmlUnit, required cor-
rect, standard HTML and Javascript. Specifying tests depended on good HTML

Janet’s Story

Lisa’s Story

TESTABILITY 185

practices such as giving each element a unique ID. The programmers started writ-
ing HTML and JavaScript (and later, Ajax) with the test tool in mind, making test
automation much easier. They also started validating their HTML and making sure it
was up to industry standards. This also reduced the possibility of the application
having problems in different browsers and browser versions.

—Lisa

Coding and testing are part of one process in agile development. Code design
and test design are complementary and interdependent. It’s a chicken-and-
egg scenario: You can’t write tests without a testable code design, and you
can’t write code without well-designed tests that clearly communicate re-
quirements and are compatible with the system architecture. This is why we
always consider coding and testing together. When we estimate stories, we in-
clude time for both coding and testing, and when we plan each iteration and
story, we budget time to design both tests and code. If automating a test
proves difficult, evaluate the code design. If programmers are writing code
that doesn’t match customer expectations, the problem might be poorly de-
signed tests.

Automated vs. Manual Quadrant 2 Tests

We’ve assumed that at least a good-sized portion of the tests that guide pro-
gramming will be automated. Manual test scenarios can also drive program-
ming if you share them with the programmers early. The earlier you turn
them into automated tests, the faster you will realize the benefit. Most man-
ual tests fall more into the “critique product” quadrant where we might learn
things about the story we hadn’t anticipated with the initial set of tests.

That doesn’t stop us from writing tests that might not be appropriate for au-
tomation. Don’t sweat the details when you’re writing tests. You might come
up with one-off tests that are important to do but not important to repeat
over and over in a regression suite. You might start thinking about end-to-
end scenarios or springboards to exploratory test sessions that might be facil-
itated with some automation but need an intelligent human to conduct them
in full. You’ll figure that out later. Right now, we want to make sure we cap-
ture the customer’s critical requirements.

Start with a simple approach, see how it works, and build on it. The impor-
tant thing is to get going writing business-facing tests to support the team as
you develop your product.

In Part IV, “Test Au-
tomation,” we’ll
dive into develop-
ing a successful
test automation
strategy and look
at considerations
such as building
your own tools
versus using third-
party or open
source tools.

186 CHAPTER 9 � TOOLKIT FOR BUSINESS-FACING TESTS THAT SUPPORT THE TEAM

TEST MANAGEMENT

If we’re automating tests, it makes sense to present them in the automation
tool framework, even if they’re not yet executable. We want some way for all
tests, even those that won’t be automated, to be accessible to everyone on the
development team and understandable to our customers. There are lots of
options available that let everyone on the team see tests. Wikis are a common
way to share test cases, and some tools such as FitNesse use a wiki or similar
tool, enabling narrative requirements, examples, and executable tests to co-
exist in one place.

Tests should be included in your source code control, so that you can track
which versions of the tests go with which versions of the code. At the very
least, have some kind of version control for your tests. Some teams use test
management tools or comprehensive test frameworks that might integrate
with requirements management, defect tracking, or other components.

SUMMARY

In this chapter, we’ve looked at tools you might want in your toolkit to help
create business-facing tests that help drive development and guidelines to
make sure the tools help rather than get in the way. The tools and guidelines
included the following:

� Teams need the right tools to elicit requirements and examples,
from the big picture down to details, including checklists, mind maps,
spreadsheets, mock-ups, flow diagrams, and various software-based
tools.

� Tools to express examples and automate tests, below and through the
GUI, are also essential to agile test automation. Some of these tools
include unit test tools, behavior-driven development tools, FitNesse,
Ruby with Watir, Selenium, and Canoo WebTest.

� “Home brewed” test automation helps teams keep the total cost of
ownership of their automated tests low.

� Driving development with business-facing tests is one way agile teams
are motivated to design testable code.

� Test strategies for building your automation should include building
your tests incrementally and making sure they always pass. Design
patterns can be used to help you create effective tests.

Chapter 14, “An
Agile Test Automa-
tion Strategy,”
goes into more
detail on how to
manage auto-
mated tests.

SUMMARY 187

� Keyword and data-driven testing is a common approach that works
with the tools we’ve discussed in this chapter.

� Consider testability in your code design, and choose your test tools
wisely, because they need to work with your code.

� We need some way to organize tests so that they can be used effec-
tively and put into version control.

This page intentionally left blank

189

Chapter 10

BUSINESS-FACING TESTS
THAT CRITIQUE THE PRODUCT

This chapter covers the third quadrant of the testing matrix. In Chapter 8,
“Business-Facing Tests that Support the Team,” we talked about the second
quadrant and how to use business-facing tests to support programming. In
this chapter, we show you how to critique the product with different types
of business-facing tests. We’ll also talk about tools that might help with
these activities.

Business-Facing/
Critique Product

Behind the GUI

Using Automated Functional Test Tools for ET

Test Setup

Monitoring Tools

Test Data Generation

Simulators

Emulators

API

Web Services

Usability

Introduction

Demonstrations

Toolkit

Scenario
Testing

Exploratory
Testing

Documentation

Workflow Testing

Domain Knowledge

End-to-End Scenarios

Soap Opera Testing

Learning by Testing

Session-Based Testing

Automate

An Exploratory Tester

User Needs and Persona Testing

Navigation

Check Out the Competition

User Documentation

Reports

190 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

INTRODUCTION TO QUADRANT 3
Remember that business-facing tests are those you could describe in terms
that would (or should) be of interest to a business expert. When we mention
testing in traditional phased approaches, it pretty much always means cri-
tiquing the product after it is built. By now, you might think that in agile de-
velopment this part of testing should be easy. After all, we just spent all that
time making sure it works as expected. The requirements have all been tested
as they were built, including security and other nonfunctional requirements,
right? All that’s left is to possibly find some obscure or interesting bugs.

As testers, we know that people make mistakes. No matter how hard we try to
get it right the first time, we sometimes get it wrong. Maybe we used an ex-
ample that didn’t test what we thought it did. Or maybe we recorded a wrong
expected result so the test passed, but it was a false positive. The business ex-
pert might have forgotten some things that real users needed. The best cus-
tomer may not know what she wants (or doesn’t want) until she sees it.

Critiquing or evaluating the product is what testers or business users do when
they assess and make judgments about the product. These evaluators form
perceptions based on whether they like the way it behaves, the look and feel,
or the workflow of new screens. It is easier to see, feel, and touch a product
and respond than to imagine what it will look like when it is described to you.

It’s difficult to automate business-facing tests that critique the product, because
such testing relies on human intellect, experience, and instinct. However, auto-
mated tools can assist with aspects of Quadrant 3 tests (see Figure 10-1), such
as test data setup. The last section of this chapter contains examples of the
types of tools that help teams focus on the important aspects of evaluating
the product’s value.

While much of the testing we discuss in this chapter is manual, don’t make
the mistake of thinking that this manual testing will be enough to produce
high-quality software and that you can get away with not automating your
regression tests. You won’t have time to do any Quadrant 3 tests if you
haven’t automated the tests in Quadrants 1 and 2.

Evaluating or critiquing the product is about manipulating the system under
test and trying to recreate actual experiences of the end users. Understanding
different business scenarios and workflows helps to make the experience
more realistic.

DEMONSTRATIONS 191

DEMONSTRATIONS

We recommend showing customers what you’re developing early and often.
As soon as a rudimentary UI or report is available during story development,
show it to the product owner or other domain expert on the team. However,
not everyone on the business side will get a chance to see the iteration’s deliv-
erables until the iteration demo. End-of-iteration demonstrations are an op-
portunity for the business users and domain experts to see what has been
delivered in the iteration and revise their priorities. It gives them a chance to
say, “That’s what I said, but it’s not what I meant.” This is a form of critiquing
the product.

Functional Tests
Examples
Story Tests
Prototypes
Simulations

Unit Tests
Component Tests

Performance & Load Testing
Security Testing

“ility” Testing

Business-Facing

Technology-Facing

Su
p

p
o

rt
in

g
th

e
Te

am Critiq
ue Pro

d
uct

Agile Testing Quadrants

Automated
& Manual

Automated Tools

Q1

Q2

Q4

Exploratory Testing
Scenarios

Usability Testing
UAT (User Acceptance Testing)

Alpha/Beta

Manual

Q3

Figure 10-1 Quadrant 3 tests

192 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

I worked on a project that had five separate teams of eight to ten members, all
developing the same system. Even though they were on the same floor, communi-
cation was an issue. There were many dependencies and overlaps, so the pro-
grammers depended on team-lead meetings to share information. However, the
business users and testers needed to see what was being developed by other
teams. They relied on end-of-iteration demonstrations given by each team to learn
what the other teams were doing.

—Janet

Demonstrations to the executives or upper management can instill confi-
dence in your project as well. One of the downfalls of a phased project is
there is nothing to see until the very end, and management has to place all of
its trust in the development team’s reports. The incremental and iterative na-
ture of agile development gives you a chance to demonstrate business value
as you produce it, even before you release it. A live demonstration can be a
very powerful tool if the participants are actively asking questions about the
new features.

Rather than waiting until the end of the iteration, you can use any opportu-
nity to demonstrate your changes. A recent project Janet worked on used reg-
ularly scheduled meetings with the business users to demonstrate new
features in order to get immediate feedback. Any desired changes were fed
into the next iteration.

Choose a frequency for your demonstrations that works for your team so
that the feedback loop is quick enough for you to incorporate changes into
the release.

Informal demos can be even more productive. Sit down with a business ex-
pert and show her the story your team is currently coding. Do some explor-
atory testing together. We’ve heard of teams that get their stakeholders to do
some exploratory testing after each iteration demo in order to help them
think of refinements and future stories to change or build on the functional-
ity just delivered.

SCENARIO TESTING

Business users can help define plausible scenarios and workflows that can
mimic end user behavior. Real-life domain knowledge is critical to creating
accurate scenarios. We want to test the system from end to end but not neces-
sarily as a black box.

Janet’s Story

Chapter 19, “Wrap
Up the Iteration,”
talks about end-
of-iteration dem-
onstrations and
reviews.

SCENARIO TESTING 193

One good technique for helping the team understand the business and user
needs is “soap opera testing,” a term coined by Hans Buwalda [2003]. The
idea here is to take a scenario that is based on real life, exaggerate it in a man-
ner similar to the way TV soap operas exaggerate behavior and emotions,
and compress it into a quick sequence of events. Think about questions like,
“What’s the worst thing that can happen, and how did it happen?”

As a tester, we often “make up” test data, but it is usually simple so we can
easily check our results. When testing different scenarios, both the data and
the flow need to be realistic. Find out if the data comes from another system
or if it’s input manually. Get a sample if you can by asking the customers to
provide data for testing. Real data will flow through the system and can be
checked along the way. In large systems, it will behave differently depending
on what decisions are made.

Soap Opera Test Example
Lisa worked on an Internet retail site, where she found soap opera tests to
be effective. Here’s an example of a soap opera scenario to test inventory,
preorder, and backorder processes of an Internet retailer’s warehouse.

The most popular toy at our online toy store this holiday season is the
Super Tester Action Figure. We have 20 preorders awaiting receipt of the
items in our warehouse. Finally, Jane, a warehouse supervisor, receives
100 Super Tester Action figures. She updates the inventory system to
show it is available inventory against the purchase order and no longer a
preorder. Our website now shows Super Tester Action Figures available
for delivery in time for the holidays. The system releases the preorders,
which are sent to the warehouse. Meanwhile, Joe, the forklift driver, is
distracted by his cell phone, and accidentally crashes into the shelf con-
taining the Super Tester Action Figures. All appear to be smashed up
beyond recognition. Jane, horrified, removes the 100 items from avail-
able inventory. Meanwhile, more orders for this popular toy have piled
up in the system item. Sorting through the debris, Jane and Joe find that
14 of the action figures have actually survived intact. Jane adds them
back into the available inventory.

This scenario tests several processes in the system, including preorder,
purchase order receipt, backorder, warehouse cancels, and preorder
release. How many Super Tester toys will show as available on the shop-
ping website at the end of all that? While executing the scenario, we’ll
probably find other areas we want to investigate; maybe the purchase
order application is difficult to use or the warehouse inventory updates
aren’t reflected properly in the website. Thinking up and executing these
types of tests will teach us more about what our users and other external
customers need than running predefined functional tests on narrower
areas of the application. As a bonus, it’s fun!

Chapter 14, “An
Agile Test Automa-
tion Strategy,” ex-
amines different
approaches to ob-
taining test data.

194 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

Tools to help define the scenarios and workflows can be simple. Data flow or
process flow diagrams will help identify some of the common scenarios.
These scenarios can help you think through a complex problem if you take
the time. Consider the users and their motivation.

Our team planned to rewrite the core functionality of the application that pro-
cesses the daily buys and sells of mutual funds. These trades are the result of re-
tirement plan participants making contributions, exchanging balances from one
fund to another, or withdrawing money from their accounts. Lisa’s coworker, Mike
Thomas, studied the existing trade processing flow and diagrammed it so that the
team could understand it well before trying to rewrite the code. Figure 10-2
shows a portion of the flow diagram. WT stands for the custodian who does the
actual trading. Three different file types are downloaded and translated into read-
able format: CFM, PRI, and POS. Each of these files feeds into a different part of the
application to perform processing and produce various outputs: settled trades, a
ticker exception report, and a fund position report.

—Lisa

When testing end-to-end, make spot checks to make sure the data, status
flags, calculations, and so on are behaving as expected. Use flow diagrams
and other visual aids to help you understand the functionality. Many organi-

Lisa’s Story

Figure 10-2 Sample portion of a process flow diagram

Trade Processing

PRI File

CFM File
POS File

Settled
Txns

Ticker
Exception Rpt

Omnibus Fund
Position Rpt

TP3
Upload/Verify

Positions

TP1
Settle Trades

TP2
Update Prices

WT
Download/Translate Download/Translate

Download/Translate

EXPLORATORY TESTING 195

zations depend on reports to make decisions, and those reports seem to be
the last thing we verify. If your scenarios have been identified correctly, you
might be able to use your application reports to provide a final check.

EXPLORATORY TESTING

Exploratory testing (ET) is an important approach to testing in the agile
world. As an investigative tool, it’s a critical supplement to the story tests and
our automated regression suite. It is a sophisticated, thoughtful approach to
testing without a script, and it enables you to go beyond the obvious varia-
tions that have already been tested. Exploratory testing combines learning,
test design, and test execution into one test approach. We apply heuristics
and techniques in a disciplined way so that the “doing” reveals more implica-
tions that just thinking about a problem. As you test, you learn more about
the system under test and can use that information to help design new tests.

Exploratory testing is not a means of evaluating the software through ex-
haustive testing. It is meant to add another dimension to your testing. You do
just enough to see if the “done” stories are really done to your satisfaction.

A valuable side effect of exploratory testing is the learning that comes out of
it. It reveals areas of the product that could use more automated tests and
brings up ideas for new or modified features that lead to new stories.

Exploratory Testing Explained
Michael Bolton is a trainer and consultant in rapid and exploratory testing
approaches. He teaches a course called Rapid Software Testing, which he co-
writes with senior author James Bach. Here’s Michael’s definition of explor-
atory testing.

Cem Kaner didn’t invent exploratory testing, but he identified and
named it in 1983, in the first edition of Testing Computer Software, as an
approach all testers use when their brains are engaged in their work. He
and James Bach, the other leading advocate of the approach, have long
defined exploratory testing as “simultaneous test design, test execution,
and learning.” Kaner also defines exploratory testing more explicitly as “a
style of testing that emphasizes the freedom and responsibility of the in-
dividual tester to continually optimize the value of her work by treating
learning, test design, test execution, and test result interpretation as ac-
tivities that continue in parallel throughout the project.” That’s quite a
mouthful. What does it mean?

The bibliography
lists more resources
you should investi-
gate to learn more
about exploratory
testing.

See the bibliogra-
phy for some links
to more about
Rapid Software
Testing.

196 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

The most important thing to remember about exploratory testing is that
it’s not a test technique on its own. Instead, it’s an approach or a mind-
set that can be applied to any test technique. The second thing to
remember is that exploratory testing is not merely about test execution;
testers can also take an exploratory approach when they’re designing
new tests at the beginning of the iteration or analyzing the results of
tests that have already been performed. A third important note is that
exploratory testing isn’t sloppy or slapdash or unprepared testing. An
exploratory approach might require very extensive and elaborate prepa-
ration for certain tests—and an exploratory tester’s knowledge and skill
set, developed over years, is an often invisible yet important form of
preparation. An exploratory test might be performed manually, or might
employ extensive use of test automation—that is, any use of tools to
support testing. So if exploratory testing isn’t a technique, nor test exe-
cution, nor spontaneous, nor manual, what is it that makes a test activity
exploratory? The answer lies in the cognitive engagement of the tester—
how the tester responds to a situation that is continuously changing.

Suppose that a tester is given the mission to test a configuration dialog
for a text editor. A tester using an exploratory approach would use spec-
ifications and conversations about the desired behavior to inform test
ideas, but would tend to record these ideas in less detail than a tester
using a scripted approach. A skilled tester doesn’t generally need much
explicit instruction unless the test ideas require some specific actions or
data. If so, they might be written down or supplied to a program that
could exercise them quickly. Upon seeing the dialog, the exploratory
tester would interact with it, usually performing tests in accordance with
the original test ideas—but she might also turn her attention to other
ideas based on new problems or risks in the dialog as it appeared in
front of her. Can two settings conflict in a way not covered by existing
tests? The exploratory tester immediately investigates by performing a
test on the spot. Does the dialog have a usability issue that could inter-
fere with a user’s work flow? The exploratory tester quickly considers a
variety of users and scenarios and evaluates the significance of the prob-
lem. Is there a delay upon pressing the OK button? The exploratory
tester performs a few more tests to seek a general pattern. Is there a
possibility that some configuration options might not be possible on
another platform? The exploratory tester notes the need for additional
testing and moves on. Upon receiving new builds, the exploratory tester
would tend to deemphasize repetition and emphasize variation in order
to discover problems missed by older tests that are no longer revealing
interesting information. This approach, which has always been fruitful, is
even more powerful in environments where the need for repeated test-
ing is handled by the developers’ low-level, automated regression tests.

Exploratory testing is characterized by the degree to which the tester is
under her own control, making informed choices about what he or she

EXPLORATORY TESTING 197

is going to do next, and where the last outcome of the last activity con-
sciously informs the next choice. Exploratory and scripted approaches are
at the opposite poles of a continuum. At the extreme end of the scripted
mind-set, the decision as to what to do next comes exclusively from
someone else, at some point in the past. In the exploratory mind-set, the
decision to continue on the same line of inquiry or to choose a new path
comes entirely from the individual tester, in the moment in which the
activity occurs, The result of the last test strongly informs the tester’s
choices for the next test. Other influences include the stakeholders for
whom test information might be important, the quality criteria that are
important to stakeholders, the test coverage that stakeholders seek, spe-
cific risks associated with the item being tested, the needs of the end
user of the product, the skills of the tester, the skills of the developers,
the state of the item under test, the schedule for the project, the equip-
ment and tools that are available to the tester, and the extent to which
she can use them effectively—and that’s only a partial list.

No test activity performed by a thinking human is entirely scripted.
Humans have an extraordinary capacity to recognize things even when
people are telling them not to, and as a result we can be distracted and
diverted—but we can learn and adapt astonishingly quickly to new infor-
mation and investigate its causes and effects. Machines only recognize
what they’ve been programmed to recognize. When they’re confronted
with a surprising test result, at best they ignore it; at worst, they crash or
destroy data.

Yet no test activity performed on behalf of a client is entirely exploratory,
either. The exploratory tester is initially driven by the testing mission,
which is typically set out by the client early in the project. Exploratory
work can also be guided by checklists, strategy models, coverage out-
lines, risk lists—ideas that might come from other people at other times.
The more that the tester is controlled by these ideas rather than guided
by them, the more testing takes on a scripted approach.

Good exploration requires continuous investigation of the product by
engaged human testers, in collaboration with the rest of the project
community, rather than following a procedurally structured approach,
performed exclusively by automation. Exploration emphasizes individuals
and interactions over processes and tools. In an agile environment,
where code is produced test-first and is covered with automated regres-
sion tests, testers can have not only the confidence but also the man-
date to develop new tests and seek out new problems in the moment.
Exploration emphasizes responding to change versus following a plan.
Exploratory approaches use variation to drive an active search for prob-
lems instead of scripted manual or automated test cases that merely
confirm what we already knew. Exploration emphasizes working soft-
ware over comprehensive documentation. And to be effective, good

198 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

People unfamiliar with exploratory testing often confuse it with ad hoc test-
ing. Exploratory testing isn’t sitting down at a keyboard and typing away.
Unskilled “black box” testers may not know how to do exploratory testing.

Exploratory testing starts with a charter of what aspects of the functionality
will be explored. It requires critical thinking, interpreting the results, and
comparing them to expectations or similar systems. Following “smells” when
testing is an important component. Testers take notes during their explor-
atory testing sessions so that they can reproduce any issues they see and do
more investigation as needed.

exploration requires frequent feedback between testers, developers,
customers, and the rest of the project community, not merely repetition
of tests that were prepared at the beginning of the iteration, before we
had learned important things about the project. Exploration empha-
sizes customer collaboration over negotiated contracts. Exploratory
approaches are fundamentally agile.

Exploratory testing embraces the same values as agile development. It’s an im-
portant part of the “agile testing mind-set” and critical to any team’s success.

Technique: Exploratory Testing and Information Evaluation
Jon Hagar, an experienced exploratory tester, learner, and trainer, shares some
activities, characteristics, and skills that are vital to effective exploratory testing.

Exploratory testing uses the tester’s understanding of the system, along
with critical thinking, to define focused, experimental “tests” which can be
run in short time frames and then fed back into the test planning process.

An agile team has many opportunities to do exploratory testing, since
each development cycle creates production-ready, working software.
Starting early in each development cycle, consider exploratory tests
based on:

• Risk (analysis): The critical things you and the customer/user think can
go wrong or be potential problems that will make people unhappy.

• Models (mental or otherwise) of how software should behave: You
and/or the customer have a great expectation about what the newly
produced function should do or look like, so you test that.

• Past experience: Think about how similar systems have failed (or suc-
ceeded) in predictable patterns that can be refined into a test, and
explore it.

EXPLORATORY TESTING 199

• What your development team is telling you: Talk to your developers
and find out what “is important to us.”

• Most importantly: What you learn (see and observe) as you test. As a
tester on an agile team, a big part of your job is to constantly learn
about your product, your team, and your customer. As you learn,
you should quickly see tests based on such things as customer
needs, common mistakes the team seems to be making, or good/
bad characteristics of the product.

Some tests might be good candidates for automated regression suites.
Some might just answer your exploratory charter and be “done.” The
agile team must critically think about what they are learning and “evolve”
tests accordingly. The most important aspect here is to be “brain on”
while testing, where you are looking for the “funny,” unexpected, or
new, which automated tests would miss. Use automation for what it is
good at (repetitive tasks) and use agile humans for what we are good at
(seeing, thinking, and dealing with the unexpected).

Several components are typically needed for useful exploratory testing:

• Test Design: An exploratory tester as a good test designer under-
stands the many test methods. You should be able to call different
methods into play on the fly during the exploration. This agility is a
big advantage of exploratory testing over automated (scripted) pro-
cedures, where things must be thought out in advance.

• Careful Observation: Exploratory testers are good observers. They
watch for the unusual and unexpected and are careful about as-
sumptions of correctness. They might observe subtle software
characteristics or patterns that drive them to change the test in
real time.

• Critical Thinking: The ability to think openly and with agility is a key
reason to have thinking humans doing nonautomated exploratory
testing. Exploratory testers are able to review and redirect a test into
unexpected directions on the fly. They should also be able to ex-
plain their logic of looking for defects and to provide clear status on
testing. Critical thinking is a learned human skill.

• Diverse Ideas: Experienced testers and subject matter experts can
produce more and better ideas. Exploratory testers can build on this
diversity during testing. One of the key reasons for exploratory tests
is to use critical thinking to drive the tests in unexpected directions
and find errors.

• Rich Resources: Exploratory testers should develop a large set of
tools, techniques, test data, friends, and information sources upon
which they can draw. The agile test team members should grow their
exploratory resources throughout a project and throughout their
careers.

200 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

The term exploratory testing was popularized by the “context-driven school” of
testing. It’s a highly disciplined activity, and it can be learned. Session-based
test management is one method of testing that’s designed to make explor-
atory testing auditable and measurable [Bach, 2003].

Session-Based Testing

Session-based testing combines accountability and exploratory testing. It
gives a framework to a tester’s exploratory testing experience so that they can
report results in a consistent way.

James Bach [2003] compares exploratory testing to putting together a jigsaw puz-
zle. When I first read his article with the jigsaw puzzle analogy, exploratory testing
made perfect sense to me.

I start a jigsaw puzzle by dumping out all of the pieces of the puzzle and then
sorting them into the different colors and edge pieces. Next, I put the edge pieces
together, which gives me a framework in which to start. The edge of the jigsaw is
analogous both to the mission statement, which helps me focus, and to the time-
boxing of a session, which keeps me within certain limits.

To help you understand a day in the life of an agile exploratory tester, here is
a short tester’s story:

I arrived at 8:00 a.m. and reviewed what had happened the night before
during automated testing. The previous night’s automated tests found
some minor but interesting errors. A password field on a login form had
accepted a special character, which should have been rejected by the
validation. I created an outline as a starting point for my “attack” (a top-
level plan and/or risk list).

As I thought about my “plan of attack,” I sketched a small state model of
the problem on a flip chart and showed this to a developer and my
team’s customer rep. I designed a test incorporating their suggestions,
using some data stress inputs that I expected the validation to reject (a
1 MG file of special characters). I executed my test with my stress input,
and, sure enough, the system rejected them as expected. I tried a differ-
ent data set and the system failed with a buffer overflow in the database.
I was learning, and we were on the trail of a potentially serious security
bug. As the day went on, I explored different inputs to the password
field and worked with the team to get the bug fixed.

You can learn from automated test results as well as from exploratory testing.
Each type of testing feeds into the other. Develop a broad range of skills so
you’ll be able to identify important issues and write tests to prevent them
from reoccurring.

Janet’s Story

EXPLORATORY TESTING 201

Session-based testing is a form of exploratory testing, but it is time-boxed and a
bit more structured. I learned about session-based testing from Jonathan Bach
and found it gave me the structure I needed to do exploratory testing well. I use
the same skills as I do for a jigsaw puzzle: I look for patterns in color or shapes or
perhaps something that just doesn’t look right, an anomaly. My thought process
can take those patterns and make sense of them, using heuristics I have devel-
oped to help me solve a puzzle.

—Janet

Like solving the jigsaw puzzle by putting together the outside pieces first, we
can use session-based testing to give us the framework in which we work. In
session-based testing, we create a mission or a charter and then time-box our
session so we can focus on what’s important. Too often as testers, we can go
off track and end up chasing a bug that might or might not be important to
what we are currently testing.

Sessions are divided into three kinds of tasks: test design and execution, bug
investigation and reporting, and session setup. We measure the time we
spend on setup versus actual test execution so that we know where we spend
the most time. We can capture results in a consistent manner so that we can
report back to the team.

Automation and Exploratory Testing

We can combine exploratory testing with test automation as well. Jonathan
Kohl, in his article “Man and Machine” [2007], talks about interactive test
automation to assist exploratory testing. Use automation to do test set up,
data generation, repetitive tasks, or to progress along a workflow to the place
you want to start. Then you start using your testing skills and experience to
find the really “good” bugs, the insidious ones that otherwise escape atten-
tion. You can also use an automated test suite to explore. Just modify it a bit,
watch the results as it runs, modify it again, and watch what happens.

An Exploratory Tester

With exploratory testing, each tester has a different approach to a problem,
and has a unique style of working. However, there are certain attributes that
make for a good exploratory tester. A good tester:

� Is systematic, but pursues “smells” (anomalies, pieces that aren’t
consistent)

� Learns to recognize problems through the use of Oracles (principle or
mechanism by which we recognize a problem)

For more informa-
tion on session-
based testing,
check the bibliog-
raphy for work by
Jonathan Bach.

202 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

� Chooses a theme or role or mission statement to focus testing
� Time-boxes sessions and side trips
� Thinks about what the expert or novice user would do
� Explores together with domain experts
� Checks out similar or competitive applications

Exploratory testing helps us learn about the behavior of an application.
Testers generally know a lot about the application they’re testing. How do they
judge whether the application is usable by users who are less technical or not
familiar with it? Usability testing is vital for many software systems. We’ll talk
about that in the next section.

USABILITY TESTING

There are two types of usability testing. The first type is the kind that is done
up front by the user experience folks, using tools such as wire frames to help
drive programming. Those types of tests belong in Quadrant 2. In this sec-
tion, we’re talking about the kind of usability testing that critiques the prod-
uct. We use tools such as personas and our intuition to help us look at the
product with the end user in mind.

User Needs and Persona Testing

Let’s look at an online shopping example. We think about who will use the
site. Will it be people who have shopped online before, or will it be brand
new users who have no idea how to proceed? We’re guessing it will be a mix-
ture of both, as well as others. Take the time to ask your marketing group to
get the demographics of the end users. The numbers might help you plan
your testing.

One approach to using personas is for your team to invent several different
users of your application representing different experience levels and needs.
For our Internet retail application, we might have the following personas:

� Nancy Newbie, a senior citizen who is new to Internet shopping and
nervous about identity theft

� Hudson Hacker, who looks for ways to cheat the checkout page
� Enrico Executive, who does all his shopping online and ships gifts to

all his clients worldwide
� Betty Bargain, who’s looking for great deals
� Debbie Ditherer, who has a hard time deciding what items she really

wants to order

USABILITY TESTING 203

We might hang photos representing these different personas and their biog-
raphies in our work area so that we always keep them in mind. We can test
the same scenario as each persona in turn and see what different experiences
they might encounter.

Another way to approach persona testing, which we learned from Brian Mar-
ick and Elisabeth Hendrickson, is to pick a fictional character or famous ce-
lebrity and imagine how they would use our application. Would the Queen
of England be able to navigate our checkout process? How might Homer
Simpson search for the item he wants?

You can also just assume the roles of novice, intermediate, and expert users
as you explore the application. Can users figure out what they are supposed
to do without instructions? If you have a lot of first-time users, you might
need to make the interface very simple.

When I first started testing a new production accounting system, I found it very diffi-
cult to understand the flow, but the production accountants on the team loved it.
After I worked with it for a while, I understood the complexity behind the applica-
tion and knew why it didn’t have to be intuitive for a first-time user. This was a good
lesson for me, because I always assumed applications had to be user-friendly.

—Janet

If your application is custom-built for specific types of users, it might need to
be “smart” rather than intuitive. Training sessions might be sufficient to get

Real World Projects: Personas
The OneNote team at Microsoft uses personas as part of their testing process.
Mike Tholfsen [2008], the Test Manager for OneNote, says they use seven per-
sonas that might use OneNote, specific customer types such as Attorneys,
Students, Real Estate Agents, and Salespersons. The personas they create
contain information such as:

• General job description
• “A Day in the Life”
• Primary uses for OneNote
• List of features the persona might use
• Potential notebook structures
• Other applications used
• Configuration and hardware environment

Janet’s Story

204 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

over the initial lack of usability so that the interface can be designed for max-
imum efficiency and utility.

Navigation

Navigation is another aspect of usability testing. It’s incredibly important to
test links and make sure the tabbing order makes sense. If a user has a choice
of applications or websites, and has a bad first experience, they likely won’t
use your application again. Some of this testing is automatable, but it’s im-
portant to test the actual user experience.

If you have access to the end users, get them involved in testing the naviga-
tion. Pair with a real user, or watch one actually use the application and take
notes. When you’re designing a new user interface, consider using focus
groups to evaluate different interfaces. You can start with mock-ups and
flows drawn on paper, get opinions, and try HTML mock-ups next, to get
early feedback.

Check Out the Competition

When evaluating your application for usability, think about other applica-
tions that are similar. How do they accomplish tasks? Do you consider them
user-friendly or intuitive? If you can get access to competing software, take
some time to research how those applications work and compare them with
your product. For example, you’re testing a user interface that takes a date
range, and it has a pop-up calendar feature to select the date. Take a look at
how a similar calendar function works on an airline reservation website.

Usability testing is a fairly specialized field. If you’re producing an internal
application to be used by a few users who will be trained in its use, you prob-
ably don’t need to invest much in usability testing. If you’re writing the on-
line directory assistance for a phone company, usability might be your main
focus, so you need to learn as much as you can about it, or bring in a usabil-
ity expert.

BEHIND THE GUI
In a presentation titled “Man and Machine” [2007], Jonathan Kohl talked
about alternatives for testing interfaces. Instead of always thinking about test-
ing through the user interface, consider attacking the problem in other ways.
Think about testing the whole system from every angle that you can ap-
proach. Consider using tools like simulators or emulators.

See Chapter 8,
“Business-Facing
Tests that Support
the Team,” for an
example of Wiz-
ard of Oz testing,
which is one ap-
proach to design-
ing for usability.

See the bibliogra-
phy for links to
articles by Jeff
Patton, Gerard
Meszaros, and
others on usability
testing.

Chapter 9, “Tool-
kit for Business-
Facing Tests that
Support the
Team,” provides
more detail about
tools that facili-
tate these tests.

BEHIND THE GUI 205

API Testing

In Chapter 8 and Chapter 9, we talked about testing behind the GUI to drive
development. In this section, we show that you can extend your tests for the
API in order to try different permutations and combinations.

An API (application programming interface) is a collection of functions that
can be executed by other software applications or components. The end user
is usually never aware that an API exists; she simply interacts with the inter-
face on top.

Each API call has a specific function with a number of parameters that accept
different inputs. Each variation will return a different result. The easy tests
are simple inputs. The more complicated testing patterns occur when the pa-
rameters work together to give many possible variations. Sometimes param-
eters are optional, so it’s important that you understand the possibilities.
Boundary conditions should be considered as well, for both the inputs and
expected results. For example, use both valid and invalid strings for parame-
ters, vary the content, and vary the length of the strings’ input.

Another way to test is to vary the order of the API calls. Changing the se-
quence might produce unexpected results and reveal bugs that would never
be found through UI testing. You can control the tests much more easily than
when using the UI.

My team was working on a set of stories to enable retirement plan sponsors to
upload payroll contribution files. We wrote FitNesse test cases to illustrate the
file parsing rules, and the programmer wrote unit tests for those as well. When
the coding for the parser was complete, we wanted to throw a lot more combi-
nations of data at the parser, including some really bizarre ones, and see what
happened. We could use the same fixture as we used for our tests to drive de-
velopment, enter all of the crazy combinations we could think of, and see the
results. We tested about 100 variations of both valid and invalid data. Figure 10-3
shows an example of just a few of the tests we tried. We found several errors in
the code this way.

We didn’t keep all of these tests in the regression suite because they were just a
means of quickly trying every combination we could think of. We could have done
these tests in a semi-automated, ad hoc manner too, not bothering to type the
expected results into the result checking table, and just eyeballing the outputs to
make sure they looked correct.

—Lisa

Lisa’s Story

206 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

I recently worked with a web application that interfaces to a legacy system
through a well-defined API. Due to the design of the legacy system and the fact
that the data is hard to replicate, the team hasn’t yet found a way to automate this
testing. However, we could look in the log files to verify the correct inputs were
passed and the expected result was returned. Valuable exploratory testing of APIs
is possible with or without benefit of automation.

—Janet

API calls can be developed early in an application life cycle, which means
testing can occur early as well. Testing through an API can give confidence in
the system before a UI is ever developed. Because this type of testing can be
automated, you will need to work with your programmers to understand all
of the parameters and the purpose of each function. If your programmers or
automation team develop a test harness that is easy to use, you should be able
to methodically create a suite of test cases that exercises the functionality.

Janet’s Story

Figure 10-3 Sample of parsing rules test

TESTING DOCUMENTS AND DOCUMENTATION 207

Web Services

Web services are a services-based architecture that provides an external inter-
face so that others can access the system. There might be multiple stakeholders,
and you may not even know who will be using your product. Your testing
will need to confirm the quality of service that the external customers expect.

Consider levels of service that have been promised to clients when you are
creating your test plans. Make time for exploratory testing to simulate the
different ways users might access the web services.

The use of web services standards also offers other implications for current
testing tools. As with API calls, web services-based integration highlights the
importance of validating interface points. However, we also need to consider
message formats and processing, queuing times, and message response times.

Using testing tools that utilize GUI-driven automation is simply inadequate
for a web services project. A domain-specific language that encapsulates im-
plementation details “behind the scenes” works well for testing web services.

TESTING DOCUMENTS AND DOCUMENTATION

One of the components of the system that is often overlooked during testing is
documentation. As agile developers, we may value working software over doc-
umentation, but we still value documentation! User manuals and online help
need validation just as much as software. Your team may employ specialists
such as technical writers who create and verify documentation. As with all
other components of the product, your whole team is responsible for the qual-
ity of the documentation, and that includes both hard copy and electronic.

User Documentation

Your team might do Quadrant 2 tests to support the team as they produce
documentation; in fact we encourage it. Lisa’s team writes code that pro-
duces documents whose contents are specified by government regulations,
and programmers can write much of the code test-first. However, it’s difficult
for automated tests to judge whether a document is formatted correctly or
uses a readable font. They also can’t evaluate whether the contents of docu-
ments such as user manuals are accurate or useful. Because documentation
has many subjective components, validating it is more of a critiquing activity.

Web services
generally require
plenty of security,
stress, and reliabil-
ity testing. See
Chapter 12, “Cri-
tiquing the Product
using Technology-
Facing Tests,” for
more on these
types of tests.

Chapter 12, “Sum-
mary of Testing
Quadrants,” has an
example of testing
web services.

208 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

Technical writers and testers can work very closely together. Stephanie, a techni-
cal writer I worked with on one project, talked with the programmers to under-
stand how the application worked. She would also work through the application
to make sure she wrote it down correctly. This seemed to be a duplication of the
testing effort, so Stephanie and I sat down and figured out a better approach.

We decided to work together on the stories as they were developed. For some
stories Stephanie was lead “tester,” and sometimes I took that role. If I was lead,
I’d create my test conditions and examples and Stephanie would use those as her
basis for the documentation. When Stephanie was lead, she would write her doc-
umentation, and then I would use that to determine the test cases.

Doing it this way enabled the documentation to be tested and the tests to be
challenged before they were ever executed. Working hand in hand like this
proved to be a very successful experiment. The resulting documentation matched
the software’s behavior and was much more useful to the end users.

—Janet

Don’t forget to check the help text too. Are the links to help text easily identi-
fiable? Are they consistent throughout the user interface? Is the help text pre-
sented clearly? If it opens in a pop-up, and users block pop-ups in their
browsers, what’s the impact? Does the help cover all of the topics needed? On
Lisa’s projects, help text tends to be a low priority, so it often doesn’t get done
at all. That’s a business decision, but if you feel an area of the application
needs extra help text or documentation, raise the issue to your team and your
customers.

Reports

Another system component that’s often overlooked from a testing perspec-
tive is reports. Reports are critical to many users for decision-making pur-
poses but are often left until the very end, and either don’t get done or are
poorly executed. Reports might be tailored to meet specific customer needs,
but there are many third-party tools available for generating reports. Reports
may be part of the application itself or be generated through a separate re-
porting system for end users.

We discuss testing reports along with the other Quadrant 3 test activities in
order to critique the product, but we recommend that you also write Quad-
rant 2 report tests that will guide the coding and help the team understand
the customer’s needs as it produces reports. They can certainly be written
test-first. Like documents, though, you need to look at a report to know if it’s
easy enough to read and presents information in an understandable way.

Janet’s Story

TESTING DOCUMENTS AND DOCUMENTATION 209

One of the biggest challenges when testing reports is not the formatting but
getting the right data. When you try to create test data for reports, it can be dif-
ficult to get a good cross section of realistic data. It also is usually the edge cases
that make the reports fail, so incorporating that extra data is not feasible. In
most cases, it’s best to use production data (or data copied from the produc-
tion system into a test environment) to test the different reporting variations.

Our application includes a number of reports, many of which help companies
meet governmental compliance requirements. While we have automated smoke
tests for each report, any change to a report, or even an upgrade in the tool we
use to generate reports, requires extensive manual and visual testing. We have to
watch like hawks: Has a number been truncated by one character? Did a piece of
text run over to the next page? Is the right data included? Wrong or missing data
can mean trouble with the regulatory agency.

Another challenge is verifying the data contained in the report. If I were to use the
same query that the report uses, it doesn’t prove anything. I sometimes struggle to
come up with my own SQL queries to compare the actual data with what shows
up on a report. We budget extra time to test reports, even the simple-looking
ones.

Because reports are so subjective, we find that different stakeholders have differ-
ent preferences for how the data is presented. The plan administrator who has to
explain a report to a user on the phone has a different idea of what’s easy to
understand than the company lawyer who decides what data needs to be on the
report. Our product owner helps us get consensus from all areas of the business.

The contents and formatting of a report are important, of course, but for online
reports, the speed at which they come up is critical too. Our plan administrators
wanted complete freedom to specify any date range for some transaction history
reports. Our DBA, who coded the reports, warned that for a large company’s
retirement plan, data for more than a few months worth of transactions could
take several minutes to render. Over time, companies grew, they had more and
more transactions, and eventually the user interface started timing out before it
could deliver the report. When testing, try out worst-case scenarios, which could
eventually become the most common scenario.

—Lisa

If you’re tackling a project that involves lots of reports, don’t give in to the
temptation to leave them to the end. Include some reports in each iteration if
you can. One report could be a single story or maybe even broken up into a
couple of stories. Use mock-ups to help the customers decide on report con-
tents and formatting. Find the “thin slice” or “critical path” in the report, code
that first, and show it to your customer before you add the next slice. Incre-
mental development works as well with reports as it does with other software.

Lisa’s Story

See Chapter 8,
“Business-Facing
Tests that Support
the Team,” for in-
formation about
using thin slices.

210 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

Sometimes your customers themselves aren’t sure how a report should look
or how to approach it incrementally. And sometimes nobody on the team
anticipates how hard the testing effort will prove to be.

Like other financial accounts, retirement plans need to provide periodic state-
ments to account holders that detail all of the money going into and out of the ac-
count. These statements show the change in value between the beginning and
ending balances and other pertinent information, such as the names of account
beneficiaries. Our company wanted to improve the account statements, both as a
marketing tool and to reduce the number of calls from account holders who
didn’t understand their statements.

We didn’t have access to our direct competitors’ account statements, so the
product owner asked for volunteers to bring in account statements from banks
and other financial institutions in order to get ideas. Months of discussions and
experimentation with mock-ups produced a new statement format, which
included data that wasn’t on the report previously, such as performance results
for each mutual fund.

Stories for developing the new account statement were distributed throughout
two quarters worth of iterations. During the first quarter, stories to collect new
data were done. Testing proved much harder than we thought. We used FitNesse
tests to verify capturing the different data elements, which lulled us into a false
sense of security. It was hard to cover all of the variations, and we missed some
with the automated tests. We also didn’t anticipate that the changes to collect
new data could have an adverse effect on the data that already displayed on the
existing statements.

As a result, we didn’t do adequate manual testing of the account statements. Sub-
tle errors slipped past us. When the job to produce quarterly statements ran, calls
started coming in from customers. We had a mad scramble to diagnose and fix the
errors in both code and data. The whole project was delayed by a quarter while
we figured out better ways to test and added internal checks and better logging
to the code.

—Lisa

Short iterations mean that it can be hard to make time for adequate explor-
atory testing and other Quadrant 3 activities. Let’s look at tools that might
help speed up this testing and make time for vital manual and visual tests.

TOOLS TO ASSIST WITH EXPLORATORY TESTING

Exploratory testing is manual testing. Some of the best testing happens be-
cause a person is paying attention to details that often get missed if we are fol-

Lisa’s Story

TOOLS TO ASSIST WITH EXPLORATORY TESTING 211

lowing a script. Intuition is something that we cannot make a machine learn.
However, there are many tools that can assist us in our quest for excellence.

Tools shouldn’t replace human interaction; they should enhance the experi-
ence. Tools can provide testers with more power to find the hard-to-repro-
duce bugs that often get filed away because no one can get a handle on them.
Exploratory testing is unconventional, so why shouldn’t the tools be as well?
Think about low-effort, high-value ways that tools can be incorporated into
your testing.

Computers are good at doing repetitive tasks and performing calculations.
These are two areas where they are much better than humans, so let’s use
them for those tasks. Because testing needs to keep pace with coding, any
time advantage we can gain is a bonus.

In the next few sections, we’ll look at some areas where automation can le-
verage exploratory testing. The ones we cover are test setup, test data genera-
tion, monitoring, simulators, and emulators.

Test Setup

Let’s think about what we do when we test. We’ve just found a bug, but not
one that is easily reproducible. We’re pretty sure it happens as a result of in-
teractions between components. We go back to the beginning and try one
scenario after another. Soon we’ve spent the whole day just trying to repro-
duce this one bug.

Ask yourself how you can make this easier. We’ve found that one of the most
time-consuming tasks is the test setup and getting to the right starting point
for your actual test. If you use session-based testing, then you already know
how much time you spend setting up the test, because you have been track-
ing that particular time waster. This is an excellent opportunity for some
automation.

The tools used for business-facing tests that support the team described in
Chapter 9 are also valuable for manual exploratory testing. Automated
functional test scripts can be run to set up data and scenarios to launch ex-
ploratory testing sessions. Tests configured to accept runtime parameters
are particularly powerful for setting up a starting point for evaluating the
product.

See the bibliogra-
phy for references
to Jonathan Kohl’s
writings on using
human and auto-
mation power to-
gether for optimal
testing.

212 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

Our Watir test scripts all accept a number of runtime parameters. When I need a
retirement plan with a specific set of options, and specific types of participants, I
can kick off a Watir script or two with some variables set on the command line.
When the scripts stop, I have a browser session with all of the data I need for test-
ing already set up. This is so fast that I can test permutations I’d never get to using
all-manual keystrokes.

—Lisa

The test scripts you use for functional regression testing and for guiding de-
velopment aren’t the only tools that help take the tedium out of manual ex-
ploratory testing. There are other tools to help set up test data as well as to
help you evaluate the outputs of your testing sessions.

Whatever tool you are using, think about how it can be adapted to run the
scenario over and over with different inputs plugged in. Janet has also suc-
cessfully used Ruby with Watir to set up tests to run multiple times to help
identify bugs. Tools that drive the browser or UI in much the same way that
an end user would makes your testing more reliable because you can play it
back on your monitor and watch for anything that might not look as it
should during the setup. When you get to the place where the test actually
starts, you can then use your excellent testing abilities to track down the
source of the bug.

Test Data Generation

PerlClip is an example of a tool that you can use to test a text field with differ-
ent kinds of inputs. James Bach provides it free of charge on his website,
www.satisfice.com, and it can be very helpful in validating fields. For exam-
ple, if you have a field that will accept a maximum input of 200 characters,
testing this field and its boundaries manually would be very tedious. Use Per-
lClip to create a string, put it in your automation library, and have your auto-
mation tool call the string to test the value.

Monitoring Tools

Tools like the Unix/Linux command tail -f, or James Bach’s LogWatch, can
help monitor log files for error conditions. IDEs also provide log analysis
tools. Many error messages are never displayed on the screen, so if you’re
testing via the GUI, you never see them. Get familiar with tools like these, be-
cause they can make your testing more effective and efficient. If you are not

Lisa’s Story

TOOLS TO ASSIST WITH EXPLORATORY TESTING 213

sure where your system logs warnings and errors, ask your developers. They
probably have lots of ideas about how you can monitor the system.

Simulators

Simulators are tools used to create data that represent key characteristics and
behavior of real data for the system under test. If you do not have access to
real data for your system, simulated data will sometimes work almost as well.
The other advantage of using a simulator is for pumping data into a system
over time. It can be used to help generate error conditions that are difficult to
create under normal circumstances and can reduce time in boundary testing.

Setting up data and test scenarios is half of the picture. You also need to have
a way to watch the outcomes of your testing. Let’s consider some tools for
that purpose.

Emulators

An emulator duplicates the functionality of a system so that it behaves like
the system under test. There are many reasons to use an emulator. When you
need to test code that interfaces with other systems or devices, emulators are
invaluable.

Two Examples of Emulators
WestJet, a Canadian airline company, provides the capability for guests to use
their mobile devices to check in at airports that support the feature. When
testing this application, it is better for both the programmers and the testers
to test various devices as early as possible. To make this feasible, they use
downloadable emulators to test the Web Check-in application quickly and
often during an iteration. Real devices, which are expensive to use, can then
be used sparingly to verify already tested functionality.

The team also created another type of emulator to help test against the leg-
acy system being interfaced with. The programmers on the legacy system
have different priorities and delivery schedules, and a backlog of requests. To
prevent this from holding up new development, the programmers on the
web application have created a type of emulator for the API into the legacy
system that returns predetermined values for specific API calls. They develop
against this emulator, and when the real changes are available, they test and
make any modifications then. This change in process has enabled them to
move ahead much more quickly than was previously possible. It has proved
to be a simple but very powerful tool.

See the ”System
Test” example in
Chapter 12, “Sum-
mary of Testing
Quadrants,” to see
how a simulator
was critical to the
testing the whole
system.

214 CHAPTER 10 � BUSINESS-FACING TESTS THAT CRITIQUE THE PRODUCT

Emulators are one tool that helps to keep testing and coding moving together
hand-in-hand. Using them is one way for testing to keep up with develop-
ment in short iterations. As you plan your releases and iterations, think about
the types of tools that might help with creating production-like test scenarios.
See if you can use the tools you’re already using for automating tests to drive
development as aids to exploratory testing.

Driving development with tests is critical to any project’s success. However,
we humans won’t always get all of the requirements for desired system be-
havior entirely correct. Our business experts themselves can miss important
aspects of functionality or interaction with other parts of the system when
they provide examples of how a feature should work. We have to use tech-
niques to help both the customer and developer teams learn more about the
system so they can keep improving the product.

SUMMARY

A large part of the testing effort is spent critiquing the product from a busi-
ness perspective. This chapter gave you some ideas about the types of tests
you can do to make your testing efforts more effective.

� Demonstrate software to stakeholders in order to get early feedback
that will help direct building the right stuff.

� Use scenarios and workflows to test the whole system from end to
end.

� Use exploratory testing to supplement automation and to take advan-
tage of human intellect and perceptions.

� Without usability in mind when testing and coding, applications
can become shelfware. Always be aware of how the system is being
used.

� Testing behind the GUI is the most effective way of getting at the
application functionality. Do some research to see how you can
approach your application.

� Incorporate all kinds of tests to make a good regression suite.
� Don’t forget about testing documentation and reports.
� Automation tools can perform tedious and repetitive tasks, such as

data and test scenario setup, and free up more time for important
manual exploratory testing.

� Tools you’re already using to automate functional tests might also be
useful to leverage exploratory tests.

SUMMARY 215

� Monitoring, resource usage, and log analysis tools built into operat-
ing systems and IDEs help testers appraise the application’s behavior.

� Simulators and emulators enable exploratory testing even when you
can’t duplicate the exact production environment.

� Even when tests are used to drive development, requirements for de-
sired behavior or interaction with other systems can be missed or
misunderstood. Quadrant 3 activities help teams keep adding value to
the product.

This page intentionally left blank

217

Chapter 11

CRITIQUING THE
PRODUCT USING
TECHNOLOGY-FACING TESTS

This chapter is focused on the bottom right corner of our testing quadrant. We’ve
looked at driving development with both business-facing and technology-facing
tests. After the code is written, we are no longer driving the development but are
looking at ways to critique the product. In the previous chapter, we examined
ways to critique from a business point of view. Now we look at ways to critique
from a technology-facing point of view. These tests are an important means of
evaluating whether our product delivers the right business value.

INTRODUCTION TO QUADRANT 4
Individual stories are pieces of the puzzle, but there’s more to an application
than that. The technology-facing tests that critique the product are more

“ility” Testing

When Do You Do It?

What Is It?

Load Type Tests

Scalability

Performance and Load

Performance and Load Tools

Baseline

Memory Management

Security

Maintainability

Interoperability

Compatibility

Reliability

Installability

Who Does It?
Critique Product Using

Technology-Facing
Tests

218 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

concerned with the nonfunctional requirements than the functional ones.
We worry about deficiencies in the product from a technical point of view.
Rather than using the business domain language, we describe requirements
using a programming domain vocabulary. This is the province of Quadrant 4
(see Figure 11-1).

Nonfunctional requirements include configuration issues, security, perfor-
mance, memory management, the “ilities” (e.g., reliability, interoperability,
and scalability), recovery, and even data conversion. Not all projects are con-
cerned about all of these issues, but it is a good idea to have a checklist to
make sure the team thinks about them and asks the customer how important
each one is.

Our customer should think about all of the quality attributes and factors that
are important and make informed trade-offs. However, many customers focus

Functional Tests
Examples
Story Tests
Prototypes
Simulations

Exploratory Testing
Scenarios

Usability Testing
UAT (User Acceptance Testing)

Alpha/Beta

Unit Tests
Component Tests

Business-Facing

Technology-Facing

Su
p

p
o

rt
in

g
th

e
Te

am Critiq
ue Pro

d
uct

Agile Testing Quadrants

Automated
& Manual Manual

Automated

Q1

Q2 Q3

Performance & Load Testing
Security Testing

“ility” Testing

Tools

Q4

Figure 11-1 Quadrant 4 tests

INTRODUCTION TO QUADRANT 4 219

on the business side of the application and don’t understand the criticality of
many nonfunctional requirements in their role of helping to define the level of
quality needed for the product. They might assume that the development team
will just take care of issues such as performance, reliability, and security.

We believe that the development team has a responsibility to explain the
consequences of not addressing these nonfunctional or cross-functional re-
quirements. We’re really all part of one product team that wants to deliver
good value, and these technology-oriented factors might expose make-or-
break issues.

Many of these nonfunctional and cross-functional issues are deemed low-
risk for many applications and so are not added to the test plan. However,
when you are planning your project, you should think about the risks in each
of these areas, address them in your test plan, and include the tools and re-
sources needed for testing them in your project plan.

In the past, I’ve been asked by specialists in areas such as performance and secu-
rity testing why they didn’t hear much about “ility” testing at agile conferences or
in publications about agile development. Like Janet, I’ve always seen these areas
of testing as critical, so this wasn’t my perception. But as I thought about it, I had
to agree that this wasn’t a much-discussed topic at the time (although that’s
changed recently).

Why would agile discussions not include such important considerations as load
testing? My theory is that it’s because agile development is driven by customers,
from user stories. Customers simply assume that software will be designed to
properly accommodate the potential load, at a reasonable rate of performance. It
doesn’t always occur to them to verbalize those concerns. If not asked to address
them, programmers may or may not think to prioritize them. I believe that one
area where testers have contributed greatly to agile teams is in bringing up ques-
tions such as, “How many concurrent users should the application support?” and
“What’s the average response time required?”

—Lisa

Because the types of testing in this quadrant are so diverse, we’ll give exam-
ples of tools that might be helpful as we go along instead of a separate toolkit
section. Tools, whether homegrown or acquired, are essential to succeed with
Quadrant 4 testing efforts. Still, the people doing the work count, so let’s
consider who on an agile team can perform these tests.

Lisa’s Story

220 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

WHO DOES IT?
All of the agile literature talks about teams being generalists; anyone should
be able to pick up a task and do it. We know that isn’t always practical, but
the idea is to be able to share the knowledge so that people don’t become silos
of information.

However, there are many tasks that need specialized knowledge. A good exam-
ple is security testing. We’re not talking about security within an application,
such as who has access rights to administer it. Because that type of security is
really part of the functional requirements and will be covered by regular sto-
ries, verifying that it works falls within the first three quadrants. We’re talking
about probing for external security flaws and knowing the types of vulnerabili-
ties in systems that hackers exploit. That is a specialized skill set.

Performance testing can be done by testers and programmers collaborating
and building simple tools for their specific needs. Some organizations pur-
chase load-testing tools that require team members who specialize in that
tool to build the scripts and analyze and interpret the results. It can be diffi-
cult for a software development organization, especially a small one, to have
enough resources to duplicate an accurate production-level load for a test, so
external providers of performance testing may be needed.

Larger organizations may have groups such as database experts that your
team can use to help with data conversion, security groups that will help you
identify risks to your application, or a production support team that can help
you test recovery or failover. Build a close relationship with these specialists.
You’ll need to work together as a virtual team to gather the information you
need about your product.

The more diverse the skill sets are in your team, the less likely you are to need
outside consultants to help you. Identify the resources you need for each
project. Many teams find that a good technical tester or toolsmith can take on
many of these tasks. If someone already on the team can learn whatever special-
ized knowledge is required, great; otherwise, bring in the expertise you need.

Skills within the Team
Jason Holzer, Product Owner for Property Testing (performance, security, sta-
bility, and reliability) at Ultimate Software, tells us that a good programmer
can write a multithreaded engine to call a function concurrently and test per-
formance. Jason feels that agile teams do have the skills to do their own per-
formance testing; they just may not realize it.

Chapter 15,
“Tester Activities in
Release or Theme
Planning,” ex-
plains how to plan
to work with ex-
ternal teams.

WHO DOES IT? 221

Regardless of whether or not your team brings in additional resources for
these types of tests, your team is still responsible for making sure the mini-
mum testing is done. The information these tests provide may result in new
stories and tasks in areas such as changing the architecture for better scalabil-
ity or implementing a system-wide security solution. Be sure to complete the
feedback loop from tests that critique the product to tests that drive changes
that will improve the nonfunctional aspects of the product.

Performance testing does require a controlled, dedicated environment.
Some specialized tools are needed, such as a profiler to measure code per-
formance. But, in Jason’s view, performance, stability, scalability, and reliability
(PSR) tests can, and should, be done at the unit level. There’s a mind-set that
holds that these tests are too complex and require specialists when in fact
the teams do possess the necessary skills.

Jason finds that awareness of the “PSR” aspects of code needs to be part of
the team’s culture.

If stakeholders place a high priority on performance, stability, scalability, and
the like, Jason recommends that the team talk about ways to verify these
aspects of the application. When teams understand the priority of qualities
such as performance and reliability, they figure out how to improve their
code to ensure them. They don’t need to depend on an outside, specialized
team. Jason explains his viewpoint.

The potential resistance I see today to this plan is that someone believes
that programmers don’t know how to PSR test and that there will need
to be a great deal of training. In my opinion, a more accurate statement
is that programmers are not aware that PSR testing is a high priority and a
key to quality. I don't think it has anything to do with knowing how to
PSR test. PSR testing is a combination of math, science, analysis, program-
ming, and problem solving. I am willing to bet that if you conducted a
competition at any software development organization where you asked
every team to implement a tree search algorithm, and the team with the
fastest algorithm would win, that every team will do PSR testing and pro-
vide PSR metrics without teaching them anything new.

PSR testing is really just telling me “How fast?” (performance), “How
long?” (stability), “How often?” (reliability), and “How much?” (scalabil-
ity). So, as long as the awareness is there and the organization is seri-
ously asking those questions with everything they develop, then PSR
testing is successfully integrated into a team.

Take a second look at the skills that your team already possesses, and brain-
storm about the types of “ility” testing that can be done with the resources
you already have. If you need outside teams, plan for that in your release and
iteration planning.

222 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

Just because this is the fourth out of four agile testing quadrants doesn’t
mean these tests come last. Your team needs to think about when to do per-
formance, security, and “ility” tests so that you ensure your product delivers
the right business value.

WHEN DO YOU DO IT?
As with functional testing, the sooner technology-facing tests that support
the team are completed, the cheaper it is to fix any issues that are found.
However, many of the cross-functional tests are expensive and hard to do in
small chunks.

Technical stories can be written to address specific requirements, such as: “As
user Abby, I need to retrieve report X in less than 20 seconds so that I can
make a decision quickly.” This story is about performance and requires spe-
cialized tests to be written, and it can be done along with the story to code
the report, or in a later iteration.

Consider a separate row on your story board for tasks needed by the product
as a whole. Lisa’s team uses this area to put cards such as “Evaluate load test
tools” or “Establish a performance test baseline.” Janet has successfully used
different colored cards to show that the story is meant for one of the expert
roles borrowed from other areas of the organization.

Some performance tests might need to wait until much of the application is
built if you are trying to baseline full end-to-end workflows. If performance
and reliability are a top priority, you need to find a way to test those early in
the project. Prioritize stories so that a steel thread or thin slice is complete
early. You should be able to create a performance test that can be run and
continue to run as you add more and more functionality to the workflow.
This may enable you to catch performance issues early and redesign the sys-
tem architecture for improvements. For many applications, correct function-
ality is irrelevant without the necessary performance.

The time to think about your nonfunctional tests is during release or theme
planning. Plan to start early, tackling small increments as needed. For each
iteration, see what tasks your team needs in order to determine whether the
code design is reliable, scalable, usable, and secure. In the next section, we’ll
look at some different types of Quadrant 4 tests.

“ILITY” TESTING 223

“ILITY” TESTING

If we could just focus on the desired behavior and functionality of the appli-
cation, life would be so simple. Unfortunately, we have to be concerned with
qualities such as security, maintainability, interoperability, compatibility, re-
liability, and installability. Let’s take a look at some of these “ilities.”

Security

OK, it doesn’t end in -ility, but we include it in the “ility” bucket because we
use technology-facing tests to appraise the security aspects of the product.
Security is a top priority for every organization these days. Every organiza-
tion needs to ensure the confidentiality and integrity of their software. They
want to verify concepts such as no repudiation, a guarantee that the message
has been sent by the party that claims to have sent it and received by the party
that claims to have received it. The application needs to perform the correct
authentication, confirming each user’s identity, and authorization, in order

Performance Testing from the Start
Ken De Souza, a software developer/tester at NCR [2008], responded to a
question on the agile-testing mailing list about when to do stress and perfor-
mance testing in an agile project with an explanation of how he approaches
performance testing.

I'd suggest designing your performance tests from the start. We build
data from the first iteration, and we run a simple performance test to
make sure it all holds together. This is more to see that the functionality
of the performance scripts holds together.

I used JMeter because I can hook FTP, SOAP, HTTP, RegEx, and so on, all
from a few threads, with just one instance running. I can test out my calls
right from the start (or at least have the infrastructure in place to do it).

My eventual goal is that when the product is close to releasing, I don't
have to nurse the performance test; I just have to crank up the threads
and let go. All my metrics and tasks have already been tested out for
months, so I'm fairly certain that anyone can run my performance test.

Performance testing can be approached using agile principles to build the
tools and test components incrementally. As with software features, focus on
getting the performance information you need, one small chunk at a time.

224 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

to allow the user access only to the services they’re authorized to use. Testing
so many different aspects of security isn’t easy.

In the rush to deliver functionality, both business experts and development
teams in newly started organizations may not be thinking of security first.
They just want to get some software working so they can do business. Autho-
rization is often the only aspect of security testing that they consider as part
of business functionality.

My current team is a case in point. The business was interested in automating func-
tionality to manage 401(k) plans. They did take pains to secure the software and
data, but it wasn’t a testing priority. When I “got religion” after hearing some good
presentations about security testing at conferences, I bought a book on security
testing and started hacking around on the site. I found some serious issues, which
we fixed, but we realized we needed a comprehensive approach to ensuring
security. We wrote stories to implement this. We also started including a “security”
task card with every story so that we’d be mindful of security needs while devel-
oping and testing.

—Lisa

Budgeting this type of work has to be a business priority. There’s a range of
alternatives available, depending on your company’s priorities and resources.
Understand your needs and the risks before you invest a lot of time and
energy.

One team that I worked with has a separate corporate security team. Whenever
functionality is added to the application that might expose a security flaw, the cor-
porate team runs the application through a security test application and produces
a report for the team. It performs static testing using a canned black-box probe on
the code and has exposed a few weak areas that the developers were able to
address. It does not give an overall picture of the security level for the application,
but that was not deemed a major concern.

—Janet

Testers who are skilled in security testing can perform security risk-based
testing, which is driven by analyzing the architectural risk, attack patterns,
or abuse and misuse cases. When specialized skills are required, bring in
what you need, but the team is still responsible for making sure the testing
gets done.

Lisa’s Story

Janet’s Story

“ILITY” TESTING 225

There are a variety of automated tools to help with security verification.
Static analysis tools, which can examine the code without executing the ap-
plication, can detect potential security flaws in the code that might not oth-
erwise show up for years. Dynamic analysis tools, which run in real time, can
test for vulnerabilities such as SQL injection and cross-site scripting. Manual
exploratory testing by a knowledgeable security tester is indispensable to de-
tect issues that automated tests can miss.

Security Testing Perspectives
Security testing is a vast topic on its own. Grig Gheorghiu shares some high-
lights about resources that can help agile teams with security testing.

Just like functional testing, security testing can be done from two per-
spectives: from the inside out (white-box testing) and from the outside
in (black-box testing). Inside-out security testing assumes that the source
code for the application under test is available to the testers. The code
can be analyzed statically with a variety of tools that try to discover com-
mon coding errors that can make the application vulnerable to attacks
such as buffer overflows or format string attacks.

The fact that the testers have access to the source code of the applica-
tion also means that they can map what some books call "the attack sur-
face" of the application, which is the list of all of the inputs and resources
used by the program under test. Armed with a knowledge of the attack
surface, testers can then apply a variety of techniques that attempt to
break the security of the application. A very effective class of such tech-
niques is called fuzzing and is based on fault injection. Using this tech-
nique, the testers try to make the application fail by feeding it various
types of inputs (hence the term fault injection). These inputs can be care-
fully crafted strings used in SQL injection attacks, random byte changes in
given input files, or random strings fed as command line arguments.

The outside-in approach is the one mostly used by attackers who try to
penetrate into the servers or the network hosting your application. As a
security tester, you need to have the same mind-set that attackers do,
which means that you have to use your creativity in discovering and ex-
ploiting vulnerabilities in your own application. You also need to stay up-
to-date with the latest security news and updates related to the platform/
operating system your application runs on, which is not an easy task.

So what are agile testers to do when faced with the apparently insur-
mountable task of testing the security of their application? Here are
some practical, pragmatic steps that anybody can follow:

1. Adopt a continuous integration (CI) process that periodically runs a
suite of automated tests against your application.

See http://en
.wikipedia.org/wiki/
Buffer_overflow
and http://en
.wikipedia.org/wiki/
Format_string_
vulnerabilities for
more information.

See http://en
.wikipedia.org/wiki/
List_of_tools_for_
static_code_analysis
for a list of tools that
can be used for
static code analysis.

More resources
on this subject can
be found at: www
.fuzzing.org/
category/fuzzing-
book/ and www
.fuzzing.org/fuzzing-
software

226 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

Just this brief look at security testing shows why specialized training and
tools are so important to do a good job of it. For most organizations, this
testing is absolutely required. One security intrusion might be enough to
take a company out of business. Even if the probability were low, the stakes
are too high to put off these tests.

2. Learn how to use one or more open source static code analysis
tools. Add a step to your CI process that consists of running
these tools against your application code. Mark the step as failed
if the tools find any critical vulnerabilities.

3. Install an automated security vulnerability scanner such as Nessus
(http://www.nessus.org/nessus/). Nessus can be run in a command-
line, non-GUI mode, which makes it suitable for inclusion in a CI tool.
Add a step to your CI process that consists of running Nessus against
your application. Capture the Nessus output in a file and parse that
file for any high-importance security holes found by the scanner.
Mark the step as failed when any such holes are found.

4. Learn how to use one or more open source fuzzing tools. Add a step
to your CI process that consists of running these tools against your
application code. Mark the step as failed if the tools find any critical
vulnerabilities.

As with any automated testing effort, running these tools is no guarantee
that your code and your application will be free of security defects.
However, running these tools will go a long way toward improving the
quality of your application in terms of security. As always, the 80/20 rule
applies. These tools will probably find the 80% most common security
bugs out there while requiring 20% of your security budget.

To find the remaining 20% of the security defects, you're well advised
to spend the other 80% of your security budget on high-quality secu-
rity experts. They will be able to test your application security thor-
oughly by the use of techniques such as SQL injection, code injection,
remote code inclusion, and cross-site scripting. While there are some
tools that try to automate some of these techniques, they are no
match for a trained professional who takes the time to understand the
inner workings of your application in order to craft the perfect attack
against it.

Security testing can be intimidating, so budget time to adopt a hacker
mind-set and decide on the right approach to the task at hand. Use the
resources Grig suggests to educate yourself. Take advantage of these tools
and techniques in order to achieve security tests with a reasonable return
on investment.

“ILITY” TESTING 227

Code that costs a lot to maintain might not kill an organization’s profitability
as quickly as a security breach, but it could lead to a long, slow death. In the
next section we consider ways to verify maintainability.

Maintainability

Maintainability is not something that is easy to test. In traditional projects,
it’s often done by the use of full code reviews or inspections. Agile teams of-
ten use pair programming, which has built-in continual code review. There
are other ways to make sure the code and tests stay maintainable.

We encourage development teams to develop standards and guidelines that
they follow for application code, the test frameworks, and the tests them-
selves. Teams that develop their own standards, rather than having them set
by some other independent team, will be more likely to follow them because
they make sense to them.

The kinds of standards we mean include naming conventions for method
names or test names. All guidelines should be simple to follow and make
maintainability easier. Examples are: “Success is always zero and failure must
be a negative value,” “Each class or module should have only one single re-
sponsibility,” or “All functions must be single entry, single exit.”

Standards for developing the GUI also make the application more testable
and maintainable, because testers know what to expect and don’t need to
wonder whether a behavior is right or wrong. It also adds to testability if you
are automating tests from the GUI. Simple standards such as, “Use names for
all GUI objects rather than defaulting to the computer assigned identifier” or
“You cannot have two fields with the same name on a page” help the team
achieve a level where the code is maintainable, as are the automated tests that
provide coverage for it.

Maintainable code supports shared code ownership. It is much easier for a
programmer to move from one area to another if all code is written in the
same style and easily understood by everyone on the team. Complexity adds
risk and also makes code harder to understand. The XP value of simplicity
should be applied to code. Simple coding standards can also include guide-
lines such as, “Avoid duplication—Don’t copy-paste methods.” These same
concepts apply to test frameworks and the tests themselves.

Maintainability is an important factor for automated tests as well. Test tools
have lagged behind programming tools in features that make them easy to

228 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

maintain, such as IDE plug-ins to make writing and maintaining test scripts
simpler and more efficient. That’s changing fast, so look for tools that pro-
vide easy refactoring and search-and-replace, and for other utilities that
make it easy to modify the scripts.

Database maintainability is also important. The database design needs to be
flexible and usable. Every iteration might bring tasks to add or remove tables,
columns, constraints, or triggers, or to do some kind of data conversion.
These tasks become a bottleneck if the database design is poor or the data-
base is cluttered with invalid data.

A serious regression bug went undetected and caused production problems. We
had a test that should have caught the bug. However, a constraint was missing
from the schema used by the regression suite. Our test schemas had grown hap-
hazardly over the years. Some had columns that no longer existed in the produc-
tion schema. Some were missing various constraints, triggers, and indices. Our DBA
had to manually make changes to each schema as needed for each story instead
of running the same script in each schema to update it. We budgeted time over
several sprints to recreate all of the test schemas so that they were identical and
also matched production.

—Lisa

Plan time to evaluate the database’s impact on team velocity, and refactor it
just as you do production and test code. Maintainability of all aspects of the
application, test, and execution environments is more a matter of assessment
and refactoring than direct testing. If your velocity is going down, is it be-
cause parts of the code are hard to work on, or is it that the database is diffi-
cult to modify?

Interoperability

Interoperability refers to the capability of diverse systems and organizations
to work together and share information. Interoperability testing looks at
end-to-end functionality between two or more communicating systems.
These tests are done in the context of the user—human or a software applica-
tion—and look at functional behavior.

In agile development, interoperability testing can be done early in the devel-
opment cycle. We have a working, deployable system at the end of each itera-
tion so that we can deploy and set up testing with other systems.

Lisa’s Story

“ILITY” TESTING 229

Quadrant 1 includes code integration tests, which are tests between compo-
nents, but there is a whole other level of integration tests in enterprise systems.
You might find yourself integrating systems through open or proprietary inter-
faces. The API you develop for your system might enable your users to easily
set up a framework for them to test easily. Easier testing for your customer
makes for faster acceptance.

In one project Janet worked on, test systems were set up at the customer’s site
so that they could start to integrate them with their own systems early. Inter-
faces to existing systems were changed as needed and tested with each new
deployment.

If the system your team works on has to work together with external systems,
you may not be able to represent them all in your test environments except
with stubs and drivers that simulate the behavior of the other systems or
equipment. This is one situation where testing after development is complete
might be unavoidable. You might have to schedule test time in a test environ-
ment shared by several teams.

Consider all of the systems with which yours needs to communicate, and
make sure you plan ahead to have an appropriate environment for testing
them together. You’ll also need to plan resources for testing that your applica-
tion is compatible with the various operating systems, browsers, clients, serv-
ers, and hardware with which it might be used. We’ll discuss compatibility
testing next.

Compatibility

The type of project you’re working on dictates how much compatibility test-
ing is required. If you have a web application and your customers are world-
wide, you will need to think about all types of browsers and operating
systems. If you are delivering a custom enterprise application, you can prob-
ably reduce the amount of compatibility testing, because you might be able
to dictate which versions are supported.

As each new screen is developed as part of a user interface story, it is a good
idea to check its operability in all supported browsers. A simple task can be
added to the story to test on all browsers.

One organization that Janet worked at had to test compatibility with reading
software for the visual impaired. Although the company had no formal test

In Chapter 20,
“Successful Deliv-
ery,” we discuss
more about the
importance of this
level of testing.

230 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

lab, it had test machines available near the team area for easy access. The
testers made periodic checks to make sure that new functionality was still
compatible with the third-party tools. It was easy to fix problems that were
discovered early during development.

Having test machines available with different operating systems or browsers
or third-party applications that need to work with the system under test makes
it easier for the testers to ensure compatibility with each new story or at the
end of an iteration. When you start a new theme or project, think about the
resources you might need to verify compatibility. If you’re starting on a brand
new product, you might have to build up a test lab for it. Make sure your team
gets information on your end users’ hardware, operating systems, browsers,
and versions of each. If the percentage of use of a new browser version has
grown large enough, it might be time to start including that version in your
compatibility testing.

When you select or create functional test tools, make sure there’s an easy way to
run the same script with different versions of browsers, operating systems, and
hardware. For example, Lisa’s team could use the same suite of GUI regression
tests on each of the servers running on Windows, Solaris, and Linux. Func-
tional test scripts can also be used for reliability testing. Let’s look at that next.

Reliability

Reliability of software can be referred to as the ability of a system to perform
and maintain its functions in routine circumstances as well as unexpected
circumstances. The system also must perform and maintain its functions
with consistency and repeatability. Reliability analysis answers the question,
“How long will it run before it breaks?” Some statistics used to measure reli-
ability are:

� Mean time to failure: The average or mean time between initial oper-
ation and the first occurrence of a failure or malfunction. In other
words, how long can the system run before it fails the first time?

� Mean time between failures: A statistical measure of reliability, this is
calculated to indicate the anticipated average time between failures.
The longer the better.

In traditional projects, we used to schedule weeks of reliability testing that
tried to run simulations that matched a regular day’s work. Now, we should
be able to deliver at the end of every iteration, so how can we schedule reli-
ability tests?

“ILITY” TESTING 231

We have automated unit and acceptance tests running on a regular basis. To
do a reliability test, we simply need to use those same tests and run them over
and over. Ideally, you would use statistics gathered that show daily usage, cre-
ate a script that mirrors the usage, and run it on a stable build for however
long your team thinks is adequate to prove stability. You can input random
data into the tests to simulate production use and make sure the application
doesn’t crash because of invalid inputs. Of course, you might want to mirror
peak usage to make sure that it handles busy times as well.

You can create stories in each iteration to develop these scripts and add new
functionality as it is added to the application. Your acceptance tests could be
very specific such as, “Functionality X must perform 10,000 operations in a
24-hour period for a minimum of 3 days.”

Beware: Running a thousand tests without any serious problems doesn’t
mean you have reliable software. You have to run the right tests. To make a
reliability test effective, think about your application and how it is used all
day, every day, over a period of time. Specify tests that are aimed at demon-
strating that your application will be able to meet your customers’ needs,
even during peak times.

Ask the customer team for their reliability criteria in the form of measurable
goals. For example, they might consider the system reliable if ten or fewer er-
rors occur for every 10,000 transactions, or the web application is available
99.999% of the time. Recovery from power outages and other disasters might
be part of the reliability objectives, and will be stated in the form of Service
Level Agreements. Know what they are. Some industries have their own soft-
ware reliability standards and guidelines.

Driving development with the right programmer and customer tests should
enhance the application’s reliability, because this usually leads to better de-
sign and fewer defects. Write additional stories and tasks as needed to deliver
a system that meets the organization’s reliability standards.

Your product might be reliable after it’s up and running, but it also needs to
be installable by all users, in all supported environments. This is another area
where following agile principles gives us an advantage.

Installability

One of the cornerstones of a successful agile team is continuous integration.
This means that a build is ready for testing anytime during the day. Many

232 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

teams choose to deploy one or more of the successful builds into test envi-
ronments on a daily basis.

Automating the deployment creates repeatability and makes deployment a
non-event. This is exciting to us because we have experienced weeks of trying
to integrate and install a new system. We know that if we build once and de-
ploy the same build to multiple environments, we have developed consistency.

On one project I worked on, the deployment was automatic and was tested on
multiple environments in the development cycle. However, there were issues
when deploying to the customer site. We added a step to the end game so that
the support group would take the release and do a complete install test as if it
were the customer’s site. We were able to walk through the deployment notes
and eliminated many of the issues the customer would have otherwise seen.

—Janet

As with any other functionality, risks associated with installation need to be
evaluated and the amount of testing determined accordingly. Our advice is to
do it early and often, and automate the process if possible.

“ility” Summary

There are other “ilities” to test, depending on your product’s domain. Safety-
critical software, such as that used in medical devices and aircraft control sys-
tems, requires extensive safety testing, and the regression tests probably
would contain tests related to safety. System redundancy and failover tests
would be especially important for such a product. Your team might need to
look at industry data around software-related safety issues and use extra code
reviews. Configurability, auditability, portability, robustness, and extensibil-
ity are just a few of the qualities your team might need to evaluate with tech-
nology-facing tests.

Whatever “ility” you need to test, use an incremental approach. Start by elic-
iting the customer team’s requirements and examples of their objectives for
that particular area of quality. Write business-facing tests to make sure the
code is designed to meet those goals. In the first iteration, the team might do
some research and come up with a test strategy to evaluate the existing qual-
ity level of the product. The next step might be to create a suitable test envi-
ronment, to research tools, or to start with some manual tests.

Janet’s Story

Chapter 20, “Suc-
cessful Delivery,”
has more on instal-
lation testing.

PERFORMANCE, LOAD, STRESS, AND SCALABILITY TESTING 233

As you learn how the application measures up to the customers’ require-
ments, close the loop with new Quadrant 1 and 2 tests that drive the applica-
tion closer to the goals for that particular property. An incremental approach
is also recommended for performance, load, and other tests that are ad-
dressed in the next section.

PERFORMANCE, LOAD, STRESS,
AND SCALABILITY TESTING

Performance, load, stress, and scalability testing all fall into Quadrant 4 be-
cause of their technology focus. Often specialized skills are required, al-
though many teams have figured out ways to do their own testing in these
areas. Let’s talk about scalability first, because it is often forgotten.

Scalability

Scalability testing verifies the application remains reliable when more users
are added. What that really means is, “Can your system handle the capacity of
a growing customer base?” It sounds simple, but really isn’t, and is a problem
that an agile team usually can’t solve by itself.

It is important to think about the whole system and not just the application
itself. For example, the network is often the bottleneck, because it can’t han-
dle the increased throughput. What about the database? Will it scale? Will the
hardware you are using handle the new loads being considered? Is it simple
just to add new hardware, or is it the bottleneck?

In one organization I was recently working in, their customer base had grown very
quickly, and the solution they had invested in had reached its capacity due to
hardware constraints. It was not a simple matter of adding a new server, because
the solution was not designed that way. The system needed to be monitored to
restart services during peak usage.

To grow, the organization had to actually change solutions to accommodate its
future growth, but this was not recognized until problems started to happen.

Ideally, the organization would have replaced the old system before it was an
issue. This is an example of why it is important to understand your system and its
capability, as well as future growth projections.

—Janet

Janet’s Story

234 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

You will need to go outside the team to get the answers you require to address
scalability issues, so plan ahead.

Performance and Load Testing

Performance testing is usually done to help identify bottlenecks in a system
or to establish a baseline for future testing. It is also done to ensure compli-
ance with performance goals and requirements, and to help stakeholders
make informed decisions related to the overall quality of the application be-
ing tested.

Load testing evaluates system behavior as more and more users access the
system at the same time. Stress testing evaluates the robustness of the appli-
cation under higher-than-expected loads. Will the application scale as the
business grows? Characteristics such as response time can be more critical
than functionality for some applications.

Grig Gheorghiu [2005] emphasizes the need for clearly defined expectations
to get value from performance testing. He says, “If you don’t know where you
want to go in terms of the system, then it matters little which direction you
take (remember Alice and the Cheshire Cat?).” For example, you probably
want to know the number of concurrent users and the acceptable response
time for a web application.

Performance and Load-Testing Tools

After you’ve defined your performance goals, you can use a variety of tools to
put a load on the system and check for bottlenecks. This can be done at the
unit level, with tools such as JUnitPerf, httperf, or a home-grown harness.
Apache JMeter, The Grinder, Pounder, ftptt, and OpenWebLoad are more
examples of the many open source performance and load test tools available
at the time of this writing. Some of these, such as JMeter, can be used on a
variety of server types, from SOAP to LDAP to POP3 mail. Plenty of com-
mercial tool options are available too, including NeoLoad, WebLoad, eValid
LoadTest, LoadRunner, and SOATest.

Use these tools to look for performance bottlenecks. Lisa’s team uses JProfiler
to look for application bottlenecks and memory leaks, and JConsole to analyze
database usage. Similar tools exist for .NET and other environments, including
.NET Memory Profiler and ANTS Profiler Pro. As Grig points out, there are
database-specific profilers to pinpoint performance issues at the database level;
ask your database experts to work with you. Your system administrators can

See the bibliogra-
phy for links to
sites where you
can research tools.

PERFORMANCE, LOAD, STRESS, AND SCALABILITY TESTING 235

help you use shell commands such as top, or tools such as PerfMon to monitor
CPU, memory, swap, disk I/O, and other hardware resources. Similar tools are
available at the network level, for example, NetScout.

You can also use the tools the team is most familiar with. In one project,
Janet worked very closely with one of the programmers to create the tests.
She helped him to define the tests needed based on customer’s performance
and load expectations, and he automated them using JUnit. Together they
analyzed the results to report back to the customer.

Establishing a baseline is a good first step for evaluating performance. The
next section explores this aspect of performance testing.

Baseline

Performance tuning can turn into a big project, so it is essential to provide a
baseline that you can compare against new versions of the software on perfor-
mance. Even if performance isn’t your biggest concern at the moment, don’t
ignore it. It’s a good idea to get a performance baseline so that you know later
which direction your response time is headed. Lisa’s company hosts a website
that has had a small load on it. They got a load test baseline on the site so that
as it grew, they’d know how performance was being affected.

Performance Baseline Test Results
Lisa’s coworker Mike Busse took on the task of obtaining performance base-
lines for their web application that manages retirement plans. He evaluated
load test tools, implemented one (JMeter), and set about to get a baseline.
He reported the results both in a high-level summary and a spreadsheet with
detailed results.

The tests simulated slowly increasing the load up to 100 concurrent users.
Three test scripts, each for a common user activity, were used, and they were
run separately and all together. Data gathered included:

• Maximum time of a transaction

• Maximum number of busy connections.

• A plot of the max time of a transaction against the number of users (see
Figure 11-2 for an example of a chart)

• Number of users who were on the system when the max time of a
transaction equaled eight seconds

236 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

An important aspect of reporting results was providing definitions of terms
such as transaction and connection in order to make the results meaningful
to everyone. For example, maximum time of a transaction is defined as the
longest transaction of all transactions completed during the test.

Mike’s report also included assumptions made for the performance test:

• Eight seconds is a transaction threshold that we would not like to
cross.

• The test web server is equivalent to either of the two web servers in
production.

• The load the system can handle, as determined by these tests, can be
doubled in production because the load is distributed between two
web servers.

• The distribution of tasks in the test that combines all three tests is accu-
rate to a reasonable degree.

Mike also identified shortcomings with the performance baseline. More than
one transaction can contribute to loading a page, meaning that the max page
load time could be longer than the max time of a transaction. The test
machine doesn’t duplicate the production environment, which has two
machines and load-balancing software to distribute the transactions.

The report ended with a conclusion about the number of concurrent users
that the production system could support. This serves as a guideline to be
aware of as the production load increases. The current load is less than half
of this number, but there are unknowns, such as whether the production
users are all active or have neglected to log out.

All Three Tests Run Together

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

of Users

Ti
m

e
(i

n
M

ill
is

ec
o

nd
s)

3 10 20 40 60 80 100

Average
Max
Poly. (Max)

Figure 11-2 Max and average transaction times at different user loads.

PERFORMANCE, LOAD, STRESS, AND SCALABILITY TESTING 237

If there are specific performance criteria that have been defined for specific
functionality, we suggest that performance testing be done as part of the iter-
ation to ensure that issues are found before it is too late to fix them.

Benchmarking can be done at any time during a release. If new functionality
is added that might affect the performance, such as complicated queries, re-
run the tests to make sure there are no adverse effects. This way, you have
time to optimize the query or code early in the cycle when the development
team is still familiar with the feature.

Any performance, load, or stress test won’t be meaningful unless it’s run in
an environment that mimics the production environment. Let’s talk more
about environments.

Test Environments

Final runs of the performance tests will help customers make decisions about
accepting their product. For accurate results, tests need to be run on equip-
ment that is similar to that of production. Often teams will use smaller ma-
chines and extrapolate the results to decide if the performance is sufficient for
the business needs. This should be clearly noted when reporting test results.

Stressing the application to see what load it can take before it crashes can also be
done anytime during the release, but usually it is not considered high-priority
by customers unless you have a mission-critical system with lots of load.

One resource that is affected by increasing load is memory. In the next sec-
tion, we discuss memory management.

Memory Management

Memory is usually described in terms of the amount (normally the mini-
mum or maximum) of memory to be used for RAM, ROM, hard drives, and
so on. You should be aware of memory usage and watch for leaks, because
they can cause catastrophic failures when the application is in production
during peak usage. Some programming languages are more susceptible to
memory issues, so understanding the strengths and weaknesses of the code

Make sure your performance tests adequately mimic production conditions.
Make results meaningful by defining each test and metric, explaining how the
results correlate to the production environment and what can be done with
the results, and providing results in graphical form.

238 CHAPTER 11 � CRITIQUING THE PRODUCT USING TECHNOLOGY-FACING TESTS

will assist you in knowing what to watch for. Testing for memory issues can
be done as part of performance, load, and stress testing.

Garbage collection is one tool used to release memory back to the program.
However, it can mask severe memory issues. If you see the available memory
steadily decreasing with usage and then all of a sudden increasing to maxi-
mum available, you might suspect the garbage collection has kicked in. Watch
for anomalies in the pattern or whether the system starts to get slow under
heavy usage. You may need to monitor for a while and work with the pro-
grammers to find the issue. The fix might be something simple, such as sched-
uling the garbage collection more often or setting the trigger level higher.

When you are working with the programmers on a story, ask them if they ex-
pect problems with memory. You can test specifically if you know there
might be a risk in the area. Watching for memory leaks is not always easy, but
there are tools to help. This is an area where programmers should have tools
easily available. Collaborate with them to verify that the application is free of
memory issues. Perform the performance and load tests described in the pre-
vious section to verify that there aren’t any memory problems.

You don’t have to be an expert on how to do technology-facing testing that
critiques the product to help your team plan for it and execute it. Your team
can evaluate what tests it needs from this quadrant. Talk about these tests as
you plan your release; you can create a test plan specifically for performance
and load if you’ve not done it before. You will need time to obtain the exper-
tise needed, either by acquiring it through identifying and learning the skills,
or by bringing in outside help. As with all development efforts, break tech-
nology-facing tests into small tasks that can be addressed and built upon
each iteration.

SUMMARY

In this chapter, we’ve explored the fourth agile testing quadrant, the technology-
facing tests that critique the product.

� The developer team should evaluate whether it has, or can acquire,
the expertise to do these tests, or if it needs to plan to bring in external
resources.

� An incremental approach to these tests, completing tasks in each iter-
ation, ensures time to address any issues that arise and avoid produc-
tion problems.

SUMMARY 239

� The team should consider various types of “ility” testing, including
security, maintainability, interoperability, compatibility, reliability,
and installability testing, and should execute these tests at appropriate
times.

� Performance, scalability, stress, and load testing should be done from
the beginning of the project.

� Research the memory management issues that might impact your
product, and plan tests to verify the application is free of memory
issues.

This page intentionally left blank

241

Chapter 12

SUMMARY OF
TESTING QUADRANTS

In Chapter 6, we introduced the testing quadrants, and in the chapters that fol-
lowed we talked about how to use the concepts in your agile project. In this chap-
ter, we’ll bring it all together with an example of an agile team that used tests
from all four quadrants.

REVIEW OF THE TESTING QUADRANTS

We’ve just spent five chapters talking about each of the quadrants (see Fig-
ure 12-1) and examples of tools you can use for the different types of testing.
The next trick is to know which tests your project needs and when to do them.
In this chapter, we’ll walk you through a real-life example of an agile project
that used tests from all four agile testing quadrants.

Quadrant Summary:
Testing on a Real

Agile Project

Unit Tests

Acceptance Tests

Functional Automation

Web Services

Embedded Test Framework

Automation

Exploratory Testing

Testing Data Feeds

End-to-End Tests

UAT

Reliability Tests

Test Code

Reporting Test Results

Critiquing
the Product

Documentation The System Explained

Driving
Development

The Team and the Process

The Application

242 CHAPTER 12 � SUMMARY OF TESTING QUADRANTS

A SYSTEM TEST EXAMPLE

The following story is about one organization’s success in testing its whole
system using a variety of home-grown and open source tools. Janet worked
with this team, and Paul Rogers was the primary test architect. This is Paul’s
story.

The Application

The system solves the problem of monitoring remote oil and gas production
wells. The solution combines a remote monitoring device that can transmit
data and receive adjustments from a central monitoring station using a pro-
prietary protocol over a satellite communication channel.

Figure 12-2 shows the architecture of the Remote Data Monitoring system. The
measurement devices on the oil wells, Remote Terminal Units (RTU), use a va-

Functional Tests
Examples
Story Tests
Prototypes
Simulations

Exploratory Testing
Scenarios

Usability Testing
UAT (User Acceptance Testing)

Alpha/Beta

Unit Tests
Component Tests

Performance & Load Testing
Security Testing

“ility” Testing

Business-Facing

Technology-Facing

Su
p

p
o

rt
in

g
th

e
Te

am Critiq
ue Pro

d
uct

Agile Testing Quadrants

Automated
& Manual Manual

Automated Tools

Q1

Q2 Q3

Q4

Figure 12-1 Agile Testing Quadrants

A SYSTEM TEST EXAMPLE 243

riety of protocols to communicate with the measurement device. This data
from each RTU is transmitted via satellite to servers located at the client’s main
office. It is then made available to users via a web interface. A notification sys-
tem, via email, fax, or phone, is available when a particular reading is outside
of normal operational limits. A Java Message Service (JMS) feed and web ser-
vices are also available to help integration with clients’ other applications.

The software application was a huge legacy system that had few unit tests.
The team was slowly rebuilding the application with new technology.

The Team and the Process

The team consisted of four software programmers, two firmware program-
mers, three to four testers, a product engineer, and an off-site manager. The
“real” customer was in another country. The development team uses XP

Client

Satellite

Message Routing
and Distribution

Data
Processing

Data
Management

Presentation
and Navigation

3rd-Party
Application

Web
Server

Message Delivery
Center

Email, Fax, Photo

DBServer

Data on JMS Queue

Admin User

Basic User
Database

RTU Satellite
ModemH/W

Site

Web Servic
es

TCP Network
Bridge

Network Bridges

Application Server

Figure 12-2 Remote data monitoring system architecture

244 CHAPTER 12 � SUMMARY OF TESTING QUADRANTS

practices, including pair programming and TDD. The customer team used
the defect-tracking system for the backlog, but most of the visibility of the
stories was through index cards. Story cards were used during iteration
planning meetings, and the task board tracked the progress.

Scrum was used as the outside reporting mechanism to the organization and
the customers. The team had two week iterations and released the product
about every four months. This varied depending on the functionality being
developed. Retrospectives were held as part of every iteration planning ses-
sion, and action was taken on the top three priority items discussed.

Continuous integration through CruiseControl provided constant builds for
the testers and the demonstrations held at the end of every iteration. Each
tester had a local environment for testing the web application, but there were
three test environments available to the system. The first one was to test new
stories and was updated as needed with the latest build. The second one was
for testing client-reported issues, because it had the last version released to
the clients. The third environment was a full stand-alone test environment
that was available for testing full deploys, communication links, and the
firmware and hardware. It was on this environment that we ran our load and
reliability tests.

TESTS DRIVING DEVELOPMENT

The tests driving development included unit test and acceptance tests.

Unit Tests

Unit tests are technology-facing tests that support programming. Those that
are developed as part of test-driven development not only help the program-
mer get the story right but also help to design the system.

The programmers on the Remote Data Monitoring project bought into Test
Driven Development (TDD) and pair programming wholeheartedly. All new
functionality was developed and tested using pair programming. All stories
delivered to the testers were supported by unit tests, and very few bugs were
found after coding was complete. The bugs that were found were generally
integration-related.

However, when the team first started, the legacy system had few unit tests to
support refactoring. As process changes were implemented, the developers

Chapter 7,
“Technology-
Facing Tests that
Support the
Team,” explains
more about unit
testing and TDD.

AUTOMATION 245

decided to start fixing the problem. Every time they touched a piece of code
in the legacy system, they added unit tests and refactored the code as neces-
sary. Gradually, the legacy system became more stable and was able to with-
stand major refactoring when it was needed. We experienced the power of
unit tests!

Acceptance Tests

The product engineer (the customer proxy) took ownership of creating the
acceptance tests. These tests varied in format depending on the actual story.
Although he struggled at first, the product engineer got pretty good at giving
the tests to the programmers before they started coding. The team created a
test template, which evolved over time, that met both the programmers’ and
the testers’ needs.

The tests were sometimes informally written, but they included data, re-
quired setup if it wasn’t immediately obvious, different variations that were
critical to the story, and some examples. The team found that examples helped
clarify the expectations for many of the stories.

The test team automated the acceptance tests as soon as possible, usually at the
same time as the stories were being developed. Of course, the product engineer
was available to answer any questions that came up during development.

These acceptance tests served three purposes. They were business-facing tests
that supported development because they were given to the team before coding
started. Secondly, they were used by the test team as the basis of automation
that fed into the regression suite and provided future ideas for exploratory test-
ing. The third purpose was to confirm that the implementation met the needs
of the customer. The product engineer did this solution verification.

AUTOMATION

Automation involved the functional test structure, web services, and embed-
ded testing.

The Automated Functional Test Structure

Ruby was used with Watir as the tool of choice for the functional automation
framework. It was determined to have the most flexibility and opportunity
for customization that was required for the system under test.

See Chapter 8,
“Business-Facing
Tests that Support
the Team,” for
more about driv-
ing development
with acceptance
tests.

246 CHAPTER 12 � SUMMARY OF TESTING QUADRANTS

The automated test code included three distinct layers, shown in Figure 12-3.
The lowest layer, Layer 1, included Watir and other classes, such as loggers
that wrote to the log files.

The second layer, Layer 2, was the page access layer, where classes that contained
code to access individual web pages lived. For example, in the application under
test (AUT) there was a login page, a create user page, and an edit user page.
Classes written in Ruby contained code that could perform certain functions in
the AUT, such as a class that logs into the application, a class to edit a user, and a
class to assign access rights to a user. These classes contained no data. For exam-
ple, the log-in class didn’t know what username to log in with.

The third and top layer, Layer 3, was the test layer, and it contained the data
needed to perform a test. It called Layer 2 classes, which in turned called
Layer 1.

For example, the actual test would call LogIn and pass Janet as the user name
and Passw0rd as the password. This meant you could feed in many different
data sets easily.

LogIn (‘Janet’, ‘Passw0rd’)

Layer 3—Test Layer

Layer 2—Page Access Layer

Layer 1—IE Controller (Watir)

Figure 12-3 Functional test layers

AUTOMATION 247

Layer 2 also knew how to handle the error messages the application gener-
ated. For example, when an invalid username was entered on the login page,
the login class detected the error message and then passed the problem back
to the tests in Layer 3.

This means the same Layer 2 classes could be used for both happy path testing
and for negative testing. In the negative case, Layer 3 would expect Layer 2 to
return a failure, and would then check to see if the test failed for the correct rea-
son by accessing the error messages that Layer Two scraped from the browser.

The functional tests used Ruby with Watir to control the DOM on the
browser and could access almost all of the objects in the page. The automated
test suite was run on nightly builds to give the team consistent feedback on
high-level application behavior. This was a lifesaver as the team continued to
build out the unit tests. This architecture efficiently accommodated the busi-
ness-facing tests that support the team.

Web Services

Web services were used by clients to interface with some of their other appli-
cations. The development group used Ruby to write a client to test each service
they developed. For these tests, Ruby’s unit testing framework, Test::Unit, was
used.

The web services tests were expanded by the test team to cover more than
1,000 different test cases, and took just minutes to run. They gave the team
an amazing amount of coverage in a short period of time.

The team demonstrated the test client to the customers, who decided to use
it as well. However, the customers subsequently decided it didn’t work for
them, so they started writing their own tests, albeit in a much more ad hoc
fashion using Ruby.

They used IRB, the interactive interface provided by Ruby, and fed values in
an exploratory method. It gave the customer an interactive environment for
discovering what worked and what didn't. It also let them get familiar with
Ruby and how we were testing, and it gave them much more confidence in
our tests. Much of their User Acceptance Testing was done using IRB.

Three different slants on the web services tests served three different pur-
poses. The programmers used it to help test their client and drive their develop-
ment. The testers used it to critique the product in a very efficient automated

248 CHAPTER 12 � SUMMARY OF TESTING QUADRANTS

manner, and the customers were able to test the web services delivered to
them using IRB.

Embedded Testing

In addition to the web interface, the RDM system consisted of a small em-
bedded device that communicated with measuring equipment using various
protocols. Using Ruby, various tests were developed to test part of its admin-
istrative interface. This interface was a command-line system similar to FTP.

These data-driven tests were contained in an Excel spreadsheet. A Ruby
script would read commands from Excel using the OLE interface and send
them to the embedded device. The script would then compare the response
from the device with the expected result, also held in the spreadsheet. Errors
were highlighted in red. These automated tests took approximately one hour
to run, while doing the same tests manually would take eight hours.

While this provided a lot of test coverage, it didn’t actually test the reason the
device was used, which was to read data from RTUs. A simulator was written
in Ruby with a FOX (FXRuby) GUI. This allowed mock data to be fed into the
device. Because the simulator could be controlled remotely, it was incorpo-
rated into automated tests that exercised the embedded device’s ability to
read data, respond to error conditions, and generate alarms when the input
data exceeded a predetermined threshold.

Embedded testing is highly technical, but with the power provided by the
simulator, the whole team was able to participate in testing the device. The
simulator was written to support testing for the test team, but the program-
mer for the firmware found it valuable and used it to help with his develop-
ment efforts as well. That was a positive unexpected side effect. Quadrant 2
tests that support the team may incorporate a variety of technologies, as they
did in this project.

CRITIQUING THE PRODUCT WITH
BUSINESS-FACING TESTS

The business-facing tests that critique the product are outlined in this section.

Exploratory Testing

The automated tests were simple and easy for everyone on the team to use.
Individual test scripts could be run to set up specific conditions, allowing ef-

CRITIQUING THE PRODUCT WITH BUSINESS-FACING TESTS 249

fective exploratory testing to be done without having to spend a lot of time
manually entering data. This worked for all three test frameworks: func-
tional, web services, and embedded.

The team performed exploratory testing to supplement the automated test
suites and get the best coverage possible. This human interaction with the
system found issues that automation didn’t find.

Usability testing was not a critical requirement for the system, but the testers
watched so that the interface made sense and flowed smoothly. The testers
used exploratory testing extensively to critique the product. The product en-
gineer also used exploratory testing for his solution verification tests.

Testing Data Feeds

As shown in Figure 12-2, the data from the system is available on a JMS
queue, as well as the web browser. To test the JMS queue, the development
group wrote a Java proxy. It connected to a queue and printed any arriving
data to the console. They also wrote a Ruby client that received this data via a
pipe, which was then available in the Ruby automated test system.

Emails were automatically sent when alarm conditions were encountered.
The alarm emails contained both plain text email and email with attach-
ments. The MIME attachments contained data useful for testing, so a Ruby
email client that supported attachments was written.

The End-to-End Tests

Quadrant 3 includes end-to-end functional testing that demonstrates the de-
sired behavior of every part of the system. From the beginning, it was apparent
that correct operation of the whole Remote Data Monitoring system could
only be determined when all components were used. Once the simulator, em-
bedded device tests, web services tests, and application tests were written, it
was a relatively simple matter to combine them to produce an automated test
of the entire system. Once again, Excel spreadsheets were used to hold the test
data, and Ruby classes were written to access the data and expected results.

The end-to-end tests were complicated by the unpredictable response of the
satellite transmission path. A predefined timeout value was set, and if the test’s
actual value did not match the expected value, the test would cycle until it
matched or the timeout was reached. When the timeout expired, the test was
deemed to have failed. Most transmission issues were found and eliminated

Exploratory test-
ing, usability test-
ing, and other
Quadrant 3 tests
are discussed in
Chapter 10,
“Business-Facing
Tests that Critique
the Product.”

250 CHAPTER 12 � SUMMARY OF TESTING QUADRANTS

this way. It would have been highly unlikely that they would have been found
with manual testing, because they were sporadic issues.

Because end-to-end tests such as these can be fragile, they may not be kept as
part of the automated regression suite. If all of the components of the system
are well covered with automated regression tests, automated end-to-end tests
might not be necessary. However, due to the nature of this system, it wasn’t
possible to do a full test without automation.

User Acceptance Testing

User Acceptance Testing (UAT) is the final critique of the product by the cus-
tomer, who should have been involved in the project from the start. In this
example, the real customer was in France, thousands of miles from the devel-
opment team. The team had to be inventive to have a successful UAT. The
customer came to work with the team members a couple of times during the
year and so was able to interact with the team a little easier than if they’d
never met.

After the team introduced agile development, Janet went to France to facili-
tate the first UAT at the customer site. It worked fairly well, and the release
was accepted after a few critical issues were fixed. The team learned a lot from
that experience.

The second UAT sign-off was done in-house. To prepare, the team worked
with the customer to develop a set of tests the customer could perform to ver-
ify new functionality. The customer was able to test the application through-
out the development cycle, so UAT didn’t produce any issues. The customer
came, ran through the tests, and signed off in a day.

We cannot stress the importance of working with the customer enough. Even
though the product engineer was the proxy for the customer, it was crucial to
get face time with the actual customer. The relationship that had been built
over time was critical to the success of the project. Janet strongly believes that
the UAT succeeded because the customer knew what the team was doing
along the way.

Reliability

Reliability, one of the “ilities” addressed by Quadrant 4 tests, was a critical
factor of the system because it was monitoring remote sites that were often

DOCUMENTATION 251

inaccessible, especially in winter. The simulator that was developed for test-
ing the embedded system was set up on a separate environment, and was run
for weeks at a time measuring stability (yet another “ility”) of the whole sys-
tem. Corrections to the system design could be planned and coded as
needed. This is a good example of why you shouldn’t wait until the end of the
project to do the technology-facing tests that critique the product.

DOCUMENTATION

The approach taken to documentation is presented in this section.

Documenting the Test Code

During development, it became clear that a formal documentation system
was needed for the test code. The simplest solution was to use RDoc, similar
to Javadoc, but for Ruby. RDoc extracted tagged comments from the source
code and generated web pages with details of files, classes, and methods. The
documents were generated every night using a batch file and were available
to the complete team. It was easy to find what test fixtures were created.

The documentation of the test code helped to document the tests and make
it easier to find what we were testing and what the tests did. It was very pow-
erful and easy to use.

Reporting the Test Results

Although comprehensive testing was being performed, there was little evi-
dence of this outside of the test team. The logs generated during automated
tests provided good information to track down problems but were not suit-
able for a wider audience.

To raise the visibility of the tests being performed, the test team developed a
logging and reporting system using Apache, PHP, and mySQL. When a test
ran, it logged the result into the database. A web front end allowed project
stakeholders to determine what tests were run, the pass/failure rate, and
other information.

We also believed in making our progress visible (good or bad) as much as
possible. To this end we created charts and graphs along the way and posted
them in common areas. Figure 12-4 shows some of the charts we created.

See Chapter 10,
“Business-Facing
Tests that Critique
the Product,” for
more about Quad-
rant 4 tests such as
reliability testing.

Chapter 16, “Hit
the Ground Run-
ning,” gives more
examples of ways
teams report test
results.

Chapter 18, “Cod-
ing and Testing,”
also discusses uses
of big visible
charts.

252 CHAPTER 12 � SUMMARY OF TESTING QUADRANTS

USING THE AGILE TESTING QUADRANTS

This example demonstrates how testing practices from all four agile testing
quadrants are combined during the life of a complex development project to
achieve successful delivery. The experience of this team illustrates many of
the principles we have been emphasizing. The whole team, including pro-
grammers, testers, customer proxy, and the actual customer, contributed to
efforts to solve automation problems. They experimented with different ap-
proaches. They combined their homegrown and open source tools in differ-
ent ways to perform testing at all levels, from the unit level to end-to-end
system testing and UAT. The success of the project demonstrates the success
of the testing approach.

As you plan each epic, release, or iteration, work with your customer team to
understand the business priorities and analyze risks. Use the quadrants to
help identify all of the different types of testing that will be needed and when
they should be performed. Is performance the most important criteria? Is the

Figure 12-4 Big visible charts used by the remote monitoring system project team

SUMMARY 253

highest priority the ability to interface with other systems? Is usability per-
haps the most important aspect?

Invest in a test architecture that accommodates the complexity of the system
under test. Plan to obtain necessary resources and expertise at the right time
for specialized tests. For each type of test, your team should work together to
choose tools that solve your testing problems. Use retrospectives to continu-
ally evaluate whether your team has the resources it needs to succeed, and
whether all necessary tests are being specified in time to serve their purpose,
and automated appropriately.

Does end-to-end testing seem impossible to do? Is your team finding it hard
to write unit tests? As Janet’s team did, get everyone experimenting with dif-
ferent approaches and tools. The quadrants provide a framework for produc-
tive brainstorming on creative ways to achieve the testing that will let the
team deliver value to the business.

SUMMARY

In this chapter, we described a real project that used tests from all four agile
testing quadrants to overcome difficult testing challenges. We used examples
from this project to show how teams can succeed with all types of testing.
Some important lessons from the Remote Data Monitoring System project are:

� The whole team should choose or create tools that solve each testing
problem.

� Combinations of common business tools such as spreadsheets and
custom-written test scripts may be needed to accomplish complex
tests.

� Invest time in building the right test architecture that works for all
team members.

� Find ways to keep customers involved in all types of testing, even if
they’re in a remote location.

� Report test results in a way that keeps all stakeholders informed about
the iteration and project progress.

� Don’t forget to document . . . but only what is useful.
� Think about all four quadrants of testing throughout your develop-

ment cycles.
� Use lessons learned during testing to critique the product in order to

drive development in subsequent iterations.

This page intentionally left blank

Part IV

AUTOMATION

Test automation is a core agile practice. Agile projects depend on automation.
Good-enough automation frees the team to deliver high-quality code fre-
quently. It provides a framework that lets the team maximize its velocity while
maintaining a high standard. Source code control, automated builds and test
suites, deployment, monitoring, and a variety of scripts and tools eliminate
tedium, ensure reliability, and allow the team to do its best work at all times.

Automation is also a vast topic. It includes tasks like writing simple shell
scripts, setting up session properties, and creating robust automated tests.
The range and number of automated tools seem to grow exponentially as we
learn about better ways to produce software. Happily, the number of excel-
lent books that teach ways to automate appears to grow just as fast.

This book is focused on the tester’s role in agile development. Because auto-
mation is key to successful agile development, we need to talk about it, but we
can’t begin to cover every aspect of the subject. What we do want to explain is
why you, as a tester, must embrace automation, and how you and your team
can overcome the many obstacles that can hamper your automation efforts.
This section describes how you can apply agile values, principles, and prac-
tices to grow a practical automation strategy, overcome barriers, and get trac-
tion on test automation.

This page intentionally left blank

257

Chapter 13

WHY WE WANT TO
AUTOMATE TESTS AND
WHAT HOLDS US BACK

Why do we automate testing, the build process, deployment, and other tasks?
Agile teams focus on always having working software, which enables them to
release production-ready software as often as needed. Achieving this goal
requires constant testing. In this chapter, we look at reasons we want to auto-
mate and the challenges that make it hard to get traction on automation.

Why Automate?

Can We
Overcome
Barriers?

Culture

Whole-Team Approach

Reasons to
Automate

Obstacles to
Watch For

Bret’s List

Attitude—Why Should We Automate?

Hump of Pain

Initial Investment

Code in Flux

Legacy Code

Fear

Old Habits

Manual Testing Takes Too Long

Reduce Error-Prone Testing Tasks

Free Up Time to Do Best Work

Safety Net

Provide Feedback Early and Often

Tests & Examples that Drive Coding Can Do More

Tests Provide Documentation

ROI/Investment

258 CHAPTER 13 � WHY WE WANT TO AUTOMATE TESTS AND WHAT HOLDS US BACK

WHY AUTOMATE?
There are multiple reasons to automate besides our saying you need to have
automation to be successful using agile. Our list includes the following:

� Manual testing takes too long.
� Manual processes are error prone.
� Automation frees people to do their best work.
� Automated regression tests provide a safety net.
� Automated tests give feedback early and often.
� Tests and examples that drive coding can do more.
� Tests provide documentation.
� Automation can be a good return on investment.

Let’s explore each of these in a little more detail.

Manual Testing Takes Too Long

The most basic reason a team wants to automate is that it simply takes too
long to complete all of the necessary testing manually. As your application
gets bigger and bigger, the time to test everything grows longer and longer,
sometimes exponentially, depending on the complexity of the AUT (Applica-
tion under test).

Agile teams are able to deliver production-ready software at the end of each
short iteration by having production-ready software every day. Running a
full suite of passing regression tests at least daily is an indispensable practice,
and you can’t do it with manual regression testing. If you don’t have any au-
tomation now, you’ll have to regression test manually, but don’t let that stop
you from starting to automate it.

If you execute your regression testing manually, it takes more and more time
testing every day, every iteration. In order for testing to keep pace with cod-
ing, either the programmers have to take time to help with manual regres-
sion testing, or the team has to hire more testers. Inevitably, both technical
debt and frustration will grow.

If the code doesn’t even have to pass a suite of automated unit level regres-
sion tests, the testers will probably spend much of their time researching, try-
ing to reproduce and report those simple bugs, and less time finding
potentially serious system level bugs. In addition, because the team isn’t do-
ing test-first development, code design is more likely to be less testable and
may not provide the functionality desired by the business.

WHY AUTOMATE? 259

Manually testing a number of different scenarios can take a lot of time, espe-
cially if you’re keying inputs into a user interface. Setting up data for a variety
of complex scenarios can be an overwhelming task if you have no automated
way to speed it up. As a result, only a limited number of scenarios may be
tested, and important defects can be missed.

Manual Processes Are Error Prone

Manual testing gets repetitive, especially if you’re following scripted tests,
and manual tests get boring very quickly. It’s way too easy to make mistakes
and overlook even simple bugs. Steps and even entire tests will be skipped. If
the team’s facing a tight deadline, there’s a temptation to cut corners, and the
result is a missed problem.

Because manual testing is slow, you might still be testing at midnight on the
last day of the iteration. How many bugs will you notice then?

Automated builds, deployment, version control, and monitoring also go a
long way toward mitigating risk and making your development process more
consistent. Automating these scripted tests eliminate the possibility of errors,
because each test is done exactly the same way every time.

The adage of “build once, deploy to many” is a tester’s dream come true. Au-
tomation of the build and deploy processes allow you to know exactly what
you are testing on any given environment.

Automation Frees People to Do Their Best Work

Writing code test-first helps programmers understand requirements and de-
sign code accordingly. Having continual builds run all of the unit tests and
the functional regression tests means more time to do interesting exploratory
testing. Automating the setup for exploratory tests means even more time to
probe into potentially weak parts of the system. Because you didn’t spend
time executing tedious manual scripts, you have the energy to do a good job,
thinking of different scenarios and learning more about how the application
works.

If we’re thinking constantly about how to automate tests for a fix or new fea-
ture, we’re more likely to think of testability and a quality design rather than a
quick hack that might prove fragile. That means better code and better tests.

Automating tests can actually help with consistency across the application.

260 CHAPTER 13 � WHY WE WANT TO AUTOMATE TESTS AND WHAT HOLDS US BACK

Jason (one of my fellow testers) and I were working on some GUI automation
scripts using Ruby and Watir, and were adding constants for button names for the
tests. We quickly realized that the buttons on each page were not consistently
named. We were able to get them changed and resolved those consistency issues
very quickly, and had an easy way to enforce the naming conventions.

—Janet

Books such as Pragmatic Project Automation [2004] can guide you in auto-
mating daily development chores and free your team for important activities
such as exploratory testing.

Giving Testers Better Work
Chris McMahon described the benefits he’s experienced due to regression
test automation in a posting to the agile-testing mailing list in November
2007:

Our UI regression test automation has grown 500% since April [of 2007].
This allows us to focus the attention of real human beings on more inter-
esting testing.

Chris went on to explain, “Now that we have a lot of automation, we
have the leisure to really think about what human tests need doing. For
any testing that isn’t trivial, we have just about institutionalized a test-
idea brainstorming session before beginning execution.” Usually, Chris
and his teammates pair either two testers or one tester and a developer.
Sometimes a tester generates ideas and gets them reviewed, via a mind-
map, a wiki page, or a list in the release notes. Chris observed, “We
almost always come up with good test ideas by pairing that wouldn’t
have been found by either individual independently.”

Referring to their frequent releases of significant features, Chris says,
“Thanks to the good test automation, we have the time to invest in mak-
ing certain that the whole product is attractive and functional for real
people. Without the automation, testing this product would be both
boring and stupid. As it is, we testers have significant and interesting
work to do for each release.”

We agree with Chris that the most exciting part of test automation is the way
it expands our ability to improve the product through innovative exploratory
testing.

Janet’s Story

See Chapter 9,
“Toolkit for
Business-Facing
Tests that Support
the Team,” Chap-
ter 12, “Summary
of Testing Quad-
rants,” and Chap-
ter 14, “An Agile
Test Automation
Strategy,” for more
information about
Ruby and Watir.

WHY AUTOMATE? 261

Projects succeed when good people are free to do their best work. Automat-
ing tests appropriately makes that happen. Automated regression tests that
detect changes to existing functionality and provide immediate feedback are
a primary component of this.

Automated Regression Tests Provide a Safety Net

Most practitioners who’ve been in the software business for a few years know
the feeling of dread when they’re faced with fixing a bug or implementing a
new feature in poorly designed code that isn’t covered by automated tests.
Squeeze one end of the balloon here and another part of it bulges out. Will it
break?

Knowing the code has sufficient coverage by automated regression tests gives
a great feeling of confidence. Sure, a change might produce an unexpected ef-
fect, but we’ll know about it within a matter of minutes if it’s at the unit level,
or hours if at a higher functional level. Making the change test-first means
thinking through the changed behavior before writing the code and writing a
test to verify it, which adds to that confidence.

I recently had a conversation with one of the testers on my team who questioned
the value of automated tests. My first answer was “It’s a safety net” for the team.
However, he challenged that premise. Don’t we just become reliant on the tests
rather than fixing the root cause of the problem?

It made me think a bit more about my answer. He was right in one sense; if we be-
come complacent about our testing challenges and depend solely on automated
tests to find our issues, and then just fix them enough for the test to pass, we do
ourselves a disservice.

However, if we use the tests to identify problem areas and fix them the right way
or refactor as needed, then we are using the safety net of automation in the right
way. Automation is critical to the success of an agile project, especially as the ap-
plication grows in size.

—Janet

When they don’t have an automated suite of tests acting as a safety net, the
programmers may start viewing the testers themselves as a safety net. It’s easy
to imagine that Joe Programmer’s thought process goes like this: “I ought to
go back and add some automated unit tests for formatEmployeeInfo, but I
know Susie Tester is going to check every page where it’s used manually.
She’ll see if anything is off, so I’d just be duplicating her effort.”

Janet’s Story

262 CHAPTER 13 � WHY WE WANT TO AUTOMATE TESTS AND WHAT HOLDS US BACK

It’s nice that a programmer would think so highly of the tester’s talents, but
Joe is headed down a slippery slope. If he doesn’t automate these unit tests,
which other tests might he skip? Susie is going to be awfully busy eyeballing
all those pages.

Teams that have good coverage from automated regression tests can make
changes to the code fearlessly. They don’t have to wonder, “If I change this
formatEmployeeInfo module, will I break something in the user interface?”
The tests will tell them right away whether or not they broke anything. They
can go lots faster than teams relying exclusively on manual testing.

Automated Tests Give Feedback, Early and Often

After an automated test for a piece of functionality passes, it must continue to
pass until the functionality is intentionally changed. When we plan changes in
the application, we change the tests to accommodate them. When an auto-
mated test fails unexpectedly, a regression defect may have been introduced by
a code change. Running an automated suite of tests every time new code is
checked in helps ensure that regression bugs will be caught quickly. Quick
feedback means the change is still fresh in some programmer’s mind, so trou-
bleshooting will go more quickly than if the bug weren’t found until some test-
ing phase weeks later. Failing fast means bugs are cheaper to fix.

Automated tests run regularly and often act as your change detector. They al-
low the team an opportunity to know what has changed since the last build.
For example, were there any negative side effects with the last build? If your
automation suite has sufficient coverage, it can easily tell far-reaching effects
that manual testers can never hope to find.

More often than not, if regression tests are not automated, they won’t get run
every iteration, let alone every day. The problem arises very quickly during
the end game, when the team needs to complete all of the regression tests.
Bugs that would have been caught early are found late in the game. Many of
the benefits of testing early are lost.

Tests and Examples that Drive Coding Can Do More

In Chapter 7, “Technology-Facing Tests that Support the Team,” we talked
about using tests and examples to drive coding. We’ve talked about how im-
portant it is to drive coding with both unit and customer tests. We also want
to stress that if these tests are automated, they become valuable for a different
reason. They become the base for a very strong regression suite.

WHY AUTOMATE? 263

After my team got a handle on unit tests, refactoring, continuous integration, and
other technology-facing practices, we were able to catch regression bugs and in-
correctly implemented functionality during development.

Of course, this didn’t mean our problems were completely solved; we still some-
times missed or misunderstood requirements. However, having an automation
framework in place enabled us to start focusing on doing a better job of capturing
requirements in up-front tests. We also had more time for exploratory testing.
Over time, our defect rate declined dramatically, while our customers’ delight in
the delivered business value went up.

—Lisa

TDD and SDD (story test-driven development) keep teams thinking test-
first. During planning meetings, they talk about the tests and the best way to
do them. They design code to make the tests pass, so testability is never an is-
sue. The automated test suite grows along with the code base, providing a
safety net for constant refactoring. It’s important that the whole team prac-
tices TDD and consistently writes unit tests, or the safety net will have holes.

The team also doesn’t accrue too much technical debt, and their velocity is
bound to be stable or even increase over time. That’s one of the reasons why
the business managers should be happy to let software teams take the time to
implement good practices correctly.

Tests Are Great Documentation

In Part III, we explained how agile teams use examples and tests to guide de-
velopment. When tests that illustrate examples of desired behavior are auto-
mated, they become “living” documentation of how the system actually
works. It’s good to have narrative documentation about how a piece of func-
tionality works, but nobody can argue with an executable test that shows in
red and green how the code operates on a given set of inputs.

It’s hard to keep static documentation up to date, but if we don’t update our
automated tests when the system changes, the tests fail. We need to fix them
to keep our build process “green.” This means that automated tests are always
an accurate picture of how our code works. That’s just one of the ways our
investment in automation pays off.

Lisa’s Story

The bibliography
contains an article
by Jennitta Andrea
[2008] on team et-
iquette for TDD.

264 CHAPTER 13 � WHY WE WANT TO AUTOMATE TESTS AND WHAT HOLDS US BACK

ROI and Payback

All of the reasons just presented contribute to the bottom line and the pay-
back of automation. Automation provides consistency to a project and gives
the team opportunity to test differently and push the limits of the applica-
tion. Automation means extra time for testers and team members to concen-
trate on getting the right product out to market in a timely manner.

An important component of test automation payback is the way defects are
fixed. Teams that rely on manual tests tend to find bugs long after the code
containing the bug is written. They get into the mode of fixing the “bug of
the day,” instead of looking at the root cause of the bug and redesigning the
code accordingly. When programmers run the automated test suite in their
own sandbox, the automated regression tests find the bugs before the code is
checked in, so there’s time to correct the design. That’s a much bigger pay-
back, and it’s how you reduce technical debt and develop solid code.

BARRIERS TO AUTOMATION—THINGS THAT
GET IN THE WAY

Back in 2001, Bret Pettichord [2001] listed seven problems that plague auto-
mation. They are still applicable, but are intended for teams that do not in-
corporate automation as part of their development. And of course, because
you are doing agile, you are doing that, right?

We would like to think that everyone has included automation tasks as part
of each story, but the reality is that you probably wouldn’t be reading this
section if you had it all under control. We’ve included Bret’s list to show what
problems you probably have if you don’t include automation as part of the
everyday project deliverables.

Bret’s List

Bret’s list of automation problems looks like this:

� Only using spare time for test automation doesn’t give it the focus it
needs.

� There is a lack of clear goals.
� There is a lack of experience.
� There is high turnover, because you lose any experience you may have.
� A reaction to desperation is often the reason why automation is cho-

sen, in which case it can be more of a wish than a realistic proposal.

BARRIERS TO AUTOMATION—THINGS THAT GET IN THE WAY 265

� There can be a reluctance to think about testing; the fun is in the
automating, not in the testing.

� Focusing on solving the technology problem can cause you to lose
sight of whether the result meets the testing need.

We think there are some other problems that teams run into when trying to
automate. Even if we do try to include automation in our project deliverables,
there are other barriers to success. In the next section, we present our list of
obstacles to successful test automation.

Our List

Our list of barriers to successful test automation is based on the experiences
we’ve had with our own agile teams as well as that of the other teams we know.

� Programmers’ attitude
� The “Hump of Pain”
� Initial investment
� Code that’s always in flux
� Legacy systems
� Fear
� Old habits

Programmers’ Attitude—“Why Automate?”

Programmers who are used to working in a traditional environment, where
some separate, unseen QA team does all of the testing, may not even give
functional test automation a lot of thought. Some programmers don’t bother
to test much because they have the QA team as a safety net to catch bugs be-
fore release. Long waterfall development cycles make testing even more re-
mote to programmers. By the time the unseen testers are doing their job, the
programmers have moved on to the next release. Defects go into a queue to
be fixed later at great expense, and nobody is accountable for having pro-
duced them. Even programmers who have adopted test-driven development
and are used to automating tests at the unit level may not think about how
acceptance tests beyond the unit level get done.

I once joined an XP team of skilled programmers practicing test-driven development
that had a reasonable suite of unit tests running in an automated build process. They
had never automated any business-facing tests, so one day I started a discussion
about what tools they might use to automate functional business-facing regression
tests. The programmers wanted to know why we needed to automate these tests.

Lisa’s Story

266 CHAPTER 13 � WHY WE WANT TO AUTOMATE TESTS AND WHAT HOLDS US BACK

At the end of the first iteration, when everyone was executing the acceptance
tests by hand, I pointed out that there would be all these tests to do again in the
next iteration as regression tests, in addition to the tests for all of the new stories.
In the third iteration, there would be three times as many tests. To a tester, it
seems ridiculously obvious, but sometimes programmers need to do the manual
tests before they understand the compulsion to automate them.

—Lisa

Education is the key to getting programmers and the rest of the team to un-
derstand the importance of automation.

The “Hump of Pain” (The Learning Curve)

It’s hard to learn test automation, especially to learn how to do it in a way that
produces a good return on the resources invested in it. A term we’ve heard
Brian Marick use to describe the initial phase of automation that developers
(including testers) have to overcome is the “hump of pain” (see Figure 13-1).
This phrase refers to the struggle that most teams go through when adopting
automation.

New teams are often expected to adopt practices such as TDD and refactor-
ing, which are difficult to learn. Without good coaching, plenty of time to
master new skills, and strong management support, they’re easily discour-

Figure 13-1 Hump of pain of the automation learning curve

BARRIERS TO AUTOMATION—THINGS THAT GET IN THE WAY 267

aged. If they have extra obstacles to learning, such as having to work with
poorly designed legacy code, it may seem impossible to ever get traction on
test automation.

My team at ePlan Services originally tried to write unit tests for a legacy system that
definitely wasn’t written with testing in mind. They found this to be a difficult, if
not impossible, task, so they decided to code all new stories in a new, testable ar-
chitecture. Interestingly, about a year later, they discovered it wasn’t really that
hard to write unit tests for the old code. The problem was they didn’t know how
to write unit tests at all, and it was easier to learn on a well-designed architecture.
Writing unit-level tests became simply a natural part of writing code.

—Lisa

The hump of pain may occur because you are building your domain-specific
testing framework or learning your new functional test tool. You may want to
bring in an expert to help you get it set up right.

You know your team has overcome the “hump” when automation becomes,
if not easy, at least a natural and ingrained process. Lisa has worked on three
teams that successfully adopted TDD and functional test automation. Each
time, the team needed lots of time, training, commitment, and encourage-
ment to get traction on the practices.

Initial Investment

Even with the whole team working on the problem, automation requires a
big investment, one that may not pay off right away. It takes time and re-
search to decide on what test frameworks to use and whether to build them
in-house or use externally produced tools. New hardware and software are
probably required. Team members may take a while to ramp up on how to
use automated test harnesses.

Many people have experienced test automation efforts that didn’t pay off.
Their organization may have purchased a vendor capture-playback tool,
given it to the QA team, and expected it to solve all of the automation prob-
lems. Such tools often sit on a shelf gathering dust. There may have been
thousands of lines of GUI test scripts generated, with no one left who knows
what they do, or the test scripts that are impossible to maintain are no longer
useful.

Lisa’s Story

268 CHAPTER 13 � WHY WE WANT TO AUTOMATE TESTS AND WHAT HOLDS US BACK

I walked into an organization as a new QA manager. One of my tasks was to eval-
uate the current automated test scripts and increase the test coverage. A vendor
tool had been purchased a few years earlier, and the testers who had developed
the initial suite were no longer with the organization. One of the new testers
hired was trying to learn the tool and was adding tests to the suite.

The first thing I did was ask this tester to do an assessment on the test suite to see
what the coverage actually was. She spent a week just trying to understand how
the tests were organized. I started poking around as well and found that that the
existing tests were very poorly designed and had very little value.

We stopped adding more tests and instead spent a little bit of time understanding
what the goal was for our test automation. As it turned out, the vendor tool could
not do what we really needed it to do, so we cancelled the licenses and found an
open source tool that met our needs.

We still had to spend time learning the new open source tool, but that investment
would have been made if we’d stayed with the original vendor tool anyhow, be-
cause no one on the team knew how to use the original tool.

—Janet

Test design skills have a huge impact on whether automation pays off right
away. Poor practices produce tests that are hard to understand and maintain,
and may produce hard-to-interpret results or false failures that take time to
research. Teams with inadequate training and skills might decide the return
on their automation investment isn’t worth their time.

Good test design practices produce simple, well-designed, continually refac-
tored, maintainable tests. Libraries of test modules and objects build up over
time and make automating new tests quicker. See Chapter 14 for some hints
on and guidelines for test design for automation.

We know it’s not easy to capture metrics. For example, trying to capture the
time it takes to write and maintain automated tests versus the time it takes to
run the same regression tests manually is almost impossible. Similarly, trying
to capture how much it costs to fix defects within minutes of introducing
them versus how much it costs to find and fix problems after the end of the
iteration is also quite difficult. Many teams don’t make the effort to track this
information. Without numbers showing that automating requires less effort
and provides more value, it’s harder for teams to convince management that
an investment in automation is worthwhile. A lack of metrics that demon-
strate automation’s return on investment also makes it harder to change a
team’s habits.

Janet’s Story

BARRIERS TO AUTOMATION—THINGS THAT GET IN THE WAY 269

Code that’s Always in Flux

Automating tests through the user interface is tricky, because UIs tend to
change frequently during development. That’s one reason that simple record
and playback techniques are rarely a good choice for an agile project.

If the team is struggling to produce a good design on the underlying business
logic and database access, and major rework is done frequently, it might be
hard to keep up even with tests automated behind the GUI at the API level. If
little thought is given to testing while designing the system, it might be diffi-
cult and expensive to find a way to automate tests. The programmers and
testers need to work together to get a testable application.

Although the actual code and implementation, like the GUI, tends to change
frequently in agile development, the intent of code rarely changes. Organiz-
ing test code by the application’s intent, rather than by its implementation,
allows you to keep up with development.

Legacy Code

In our experience, it’s much easier to get traction on automation if you’re writ-
ing brand new code in an architecture designed with testing in mind. Writing
tests for existing code that has few or no tests is a daunting task at best. It seems
virtually impossible to a team new to agile and new to test automation.

It is sometimes a Catch-22. You want to automate tests so you can refactor
some of the legacy code, but the legacy code isn’t designed for testability, so it
is hard to automate tests even at the unit level.

If your team faces this type of challenge and doesn’t budget plenty of time to
brainstorm about how to tackle it, it’ll be tough to start automating tests ef-
fectively. Chapter 14 gives strategies to address these issues.

Fear

Test automation is scary to those who’ve never mastered it, and even to some
who have. Programmers may be good at writing production code, but they
might not be very experienced at writing automated tests. Testers may not
have a strong programming background, and they don’t trust their potential
test automation skills.

Non-programming testers have often gotten the message that they have
nothing to offer in the agile world. We believe otherwise. No individual tester

In Chapter 14, “An
Agile Test Automa-
tion Strategy,”
we’ll look at ways
to organize auto-
mated tests.

270 CHAPTER 13 � WHY WE WANT TO AUTOMATE TESTS AND WHAT HOLDS US BACK

should need to worry about how to do automation. It’s a team problem, and
there are usually plenty of programmers on the team who can help. The trick
is to embrace learning new ideas. Take one day at a time.

Old Habits

When iterations don’t proceed smoothly and the team can’t complete all of
the programming and testing tasks by the end of an iteration, team members
may panic. We’ve observed that when people go into panic mode, they fall
into comfortable old habits, even if those habits never produced good results.

So we may say, “We are supposed to deliver on February 1. If we want to meet
that date, we don’t have time to automate any tests. We’ll have to do whatever
manual tests can be done in that amount of time and hope for the best. We
can always automate the tests later.”

This is the road to perdition. Some manual tests can get done, but maybe not
the important manual exploratory tests that would have found the bug that
cost the company hundreds of thousands of dollars in lost sales. Then, be-
cause we didn’t finish with our test automation tasks, those tasks carry over
to the next iteration, reducing the amount of business value we can deliver.
As iterations proceed, the situation continues to deteriorate.

CAN WE OVERCOME THESE BARRIERS?
The agile whole-team approach is the foundation to overcoming automa-
tion challenges. Programmers who are new to agile are probably used to be-
ing rewarded for delivering code, whether it’s buggy or not, as long as they
meet deadlines. Test-driven development is oriented more toward design
than testing, so business-facing tests may still not enter their consciousness.
It takes leadership and a team commitment to quality to get everyone think-
ing about how to write, use, and run both technology-facing and business-
facing tests. Getting the whole team involved in test automation may be a
cultural challenge.

In the next chapter, we show how to use agile values and principles to over-
come some of the problems we’ve described in this chapter.

See Chapter 3,
“Cultural Chal-
lenges,” for some
ideas on making
changes to the
team culture in
order to facilitate
agile practices.

SUMMARY 271

SUMMARY

In this chapter, we analyzed some important factors related to test automation:

� We need automation to provide a safety net, provide us with essential
feedback, keep technical debt to a minimum, and help drive coding.

� Fear, lack of knowledge, negative past experiences with automation,
rapidly changing code, and legacy code are among the common bar-
riers to automation.

� Automating regression tests, running them in an automated build
process, and fixing root causes of defects reduces technical debt and
permits growth of solid code.

� Automating regression tests and tedious manual tasks frees the team
for more important work, such as exploratory testing.

� Teams with automated tests and automated build processes enjoy a
more stable velocity.

� Without automated regression tests, manual regression testing will
continue to grow in scope and eventually may simply be ignored.

� Team culture and history may make it harder for programmers to pri-
oritize automation of business-facing tests than coding new features.
Using agile principles and values helps the whole team overcome bar-
riers to test automation.

This page intentionally left blank

273

Chapter 14

AN AGILE TEST
AUTOMATION STRATEGY

Unit and Component Tests

API or Web Services

Behind the GUI

GUI

Load

Comparisons

Repetitive Tasks

Data Creation or Setup

Coninuous Integration,
Builds, and Deploys

Usability

Exploratory

Tests That Will Never Fail

One-Off Tests

What Hurts the Most?

Multi-Layered Approach

Test Design and Maintenance

Choosing the Right Tools

Test Pyramid

Quadrants

Apply Agile
Principles to
Automation

Developing a
Strategy—Where

Do We Start?

Automation
Test Categories

Organizing Tests

Organizing Test Results

What Shouldn’t
We Automate?

Implementing
Automation

Managing
Automated

Tests

Evaluating
Automation

Tools

Supplying
Data for

Tests

What Can
We Automate?

Developing
an Automation

Strategy

Identifying Requirements

One Tool at a Time

Choosing Tools

Agile-Friendly Tools

Keep It Simple

Iterative Feedback

Whole-Team Approach

Take Time to Do It Right

Learn by Doing

Applying Agile Coding Practices

Data Generation Tools

Avoid Database Access

When Database Access Is Unavoidable

Understand Your Needs

What Might Be
Hard to Automate?

274 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

As we explored each of the Agile Testing Quadrants in Part III, we gave examples
of tools that can help those different testing efforts succeed. Many of those tools are
for automating tests. As we described in the previous chapter, teams face plenty of
obstacles in their quest for successful test automation. Better tools become available
all the time, but the trick is to choose the right tools and learn to use them effec-
tively. Test automation requires thoughtful investment and incremental improve-
ment. In this chapter, we explain how you can apply agile values and principles to
get traction in starting or improving your automation efforts.

AN AGILE APPROACH TO TEST AUTOMATION

Here you are, reading this chapter on how to get your test automation strat-
egy working, maybe hoping for that silver bullet, or an answer to all your
questions. We hate to disappoint you, but we need to tell you right up front,
there is no silver bullet. There is no one answer that works for every team.
Don’t lose heart though, because we have some ideas to help you get started.

First, we suggest approaching your automation problems as you would any
problem. Define the problem you are trying to solve. To help you figure that
out, we first talk about some basics of test automation and reintroduce some
terms.

Automation Test Categories

In Part III, we introduced the Agile Testing Quadrants and talked about each
quadrant and the purpose of the tests in each quadrant. In this section, we
look at the quadrants in a different light. Let’s look carefully at the quadrants
(see Figure 14-1).

You can see that we’ve labeled both quadrants that support the team (Q1 and
Q2) as using automation. In Quadrant 4, the tools used for critiquing the
product from a technology point of view also usually require automated tools.
In Chapter 9, “Toolkit for Business-Facing Tests that Support the Team,” we
discussed some of the tools that can be used for automating business-facing
tests in the quest for supporting the team. In fact, the only quadrant that is not
labeled as using automation is Quadrant 3—the business-facing tests that cri-
tique the product. However, as we discussed in Chapter 10, “Business-Facing
Tests that Critique the Product,” tools may be useful for some of that testing.
For example, automation can help set up test data and user scenarios, and ana-
lyze logged activity.

AN AGILE APPROACH TO TEST AUTOMATION 275

Use the quadrants to help you identify the different types of automation tools
you might need for each project, even for each iteration. We find it helpful to
go through each quadrant and make a checklist of what tools might be
needed. Let’s say we’re about to redesign a UI. We look at Quadrant 1. How
can it be coded test-first? Do we know how to unit test our presentation layer?
Do we need a new tool to help with that? Now on to Quadrant 2. We’ll need to
do some prototyping; should we just use paper, or should we plan a Wizard of
Oz type activity? What tool will we use to create executable business-facing
tests to guide development? Do we have regression test scripts that will need
updating or replacing? We know that one of our Quadrant 3 activities will be
usability testing. That takes some advance planning. We might want tools to
help track the users’ activities so we can analyze them further. Thinking about
Quadrant 4, we realize that we have load test scripts that use the old UI, so we
have to budget time to update them for the new one.

See Chapter 8,
“Business-Facing
Tests that Support
the Team,” for
more about Wiz-
ard of Oz testing.

Functional Tests
Examples
Story Tests
Prototypes
Simulations

Exploratory Testing
Scenarios

Usability Testing
UAT (User Acceptance Testing)

Alpha/Beta

Unit Tests
Component Tests

Performance & Load Testing
Security Testing

“ility” Testing

Business-Facing

Technology-Facing

Su
p

p
o

rt
in

g
th

e
Te

am Critiq
ue Pro

d
uct

Agile Testing Quadrants

Automated
& Manual Manual

Automated Tools

Q1

Q2 Q3

Q4

Figure 14-1 Agile Testing Quadrants

276 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

As we emphasized in Part III, “Using the Agile Testing Quadrants,” the order
of quadrants doesn’t relate to the order in which we do the testing. As we
make our checklist of tools needed for each type of test, we think about when
we want to test so we know when to have our automation tools ready. For ex-
ample, a team designing a new architecture would plan to do a spike and run
scalability test against it as soon as possible. They will need to spend time
during the first iteration of the project finding and implementing a perfor-
mance test tool.

The quadrants help us figure out what tools we might need, but with so many
different automation options at different levels, a strategy for where to do
which types of testing and how to organize the tests is essential. To deliver value
quickly and often, our automation efforts need a high ROI. The test pyramid
helps us optimize our test investment.

Test Automation Pyramid

Figure 14-2 illustrates the “test automation pyramid.” We like the version
that Mike Cohn introduced, which shows the foundation layer made up of
technology-facing unit and component tests. We recognize that many teams
will struggle with this idea, because it seems the opposite of what many
teams currently have. Many test teams have been taught the “V” model of
testing, where activities such as component, system, and release testing are
done in sequence after coding activities. Other teams have an inverted pyra-
mid, with the majority of the tests in the functional or presentation layer.

The agile test automation pyramid shows three different layers of automated
tests. The lowest tier is the foundation that supports all of the rest. It’s mainly
made up of robust unit tests and component tests, the technology-facing
tests that support the team. This layer represents the bulk of the automated
tests. They’re generally written in the same language as the system under test,
using the xUnit family of tools. After a team has mastered the art of TDD,
these tests are by far the quickest and least expensive to write. They provide
the quickest feedback, too, making them highly valuable. They have the big-
gest ROI by far of any type of test.

In agile development, we try to push as many tests as possible to this layer.
While business-facing tests tend to go in one of the higher levels, we imple-
ment them at the unit level when it makes sense. If they’re tests the customers
don’t have to be able to read, and they can be coded much more quickly as
unit tests, it’s a good option. Other types of technology-facing tests such as
performance tests may also be possible at the unit level.

See Chapter 7,
“Technology-
Facing Tests that
Support the Team”
for more about
unit and compo-
nent tests.

AN AGILE APPROACH TO TEST AUTOMATION 277

The middle tier in the pyramid is the layer that includes most of the auto-
mated business-facing tests written to support the team. These are the func-
tional tests that verify that we are “building the right thing.” The tests in this
layer may include “story” tests, “acceptance” tests, and tests that cover larger
sets of functionality than the unit test layer. These tests operate at the API
level or “behind the GUI,” testing the functionality directly without going
through the GUI. We write test cases that set up inputs and fixtures that feed
the inputs into the production code, accept the outputs, and compare them
to expected results. Because these tests bypass the presentation layer, they are
less expensive to write and maintain than tests that use the interface.

We try to write them in a domain-specific language that the customers can
understand, so they take more work than unit-level tests. They also generally
run more slowly, because each test covers more ground than a unit test and
may access the database or other components. The feedback they provide is
not as quick as the unit-level tests, but it is still much faster than we could get
operating through the user interface. Therefore, their ROI is not as high as
the tests that form the base of the pyramid, but it’s higher than the top layer.

See Chapter, 8,
"Business-Facing
Tests that Support
the Team," for
more about
business-facing
tests that support
the team.

GUI
Tests

Manual
Tests

Acceptance Tests
(API Layer)

Unit Tests/Component Tests

Figure 14-2 Test automation pyramid

278 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

Fit and FitNesse are examples of tools used for the middle layer of the pyra-
mid. Home-grown test harnesses that use spreadsheets or other business-
friendly means for defining test cases are also common.

The top tier represents what should be the smallest automation effort, be-
cause the tests generally provide the lowest ROI. These tests are the ones
done through the GUI, the ones that actually operate and manipulate the
presentation layer. They are written after the code is completed, and so are
usually written to critique the product and go directly to the regression suite.

These tests are traditionally more expensive to write, although there are new
tools that help reduce the investment needed. Because components of the
user interface tend to be changed often, these tests are much more brittle
than tests that work at a functional or unit level. For example, just renaming
HTML elements could cause a test script to fail. Operating through the user
interface also slows these tests down, compared to tests in the lower levels of
the pyramid that operate directly on production code. The tests in the top
layer do provide important feedback, but a suite of GUI tests may take hours
to run rather than the few minutes required for unit-level test suites. We
want to minimize the number of tests at this layer, so they should only form
the tip of the pyramid.

No matter how many automated tests they have, most systems also need man-
ual testing activities, such as exploratory testing and user acceptance testing.
We don’t want to forget these, so we’ve illustrated them with the little cloud at
the tip of the pyramid. The bulk of our regression testing must be automated
or our manual testing won’t give us a good return on investment either.

Patrick Wilson-Welsh [2008] adds a descriptive dimension to the test auto-
mation pyramid with a “three little pigs” metaphor. The bottom foundation
layer is made of bricks. The tests are solid, and not vulnerable to the huffing
and puffing of the Big Bad Wolf. The middle layer is made of sticks. They
need rearranging more often than the brick layer to stay strong. The tests in
the top layer are made of straw. It’s hard to get them to stay in place, and the
wolf can easily blow them around. If we have too many tests made out of
straw, we’re going to spend lots of time putting them back into shape.

Most new agile teams don’t start with this shape pyramid—it’s usually in-
verted, a left-over from previous projects. GUI test tools are often easier to
learn, so teams start out with a lot of tests in their top “straw” layer. As we
mentioned in the previous chapter, the “hump of pain” that most program-
mers have to overcome to master unit test automation means that the team

We have more
about these tests
in Chapter 8,
“Business-Facing
Tests that Support
the Team,” and
Chapter 9, “Toolkit
for Business-Facing
Tests that Support
the Team,” where
we discuss the
business-facing
tests that support
the team and the
tools that effec-
tively capture
these tests.

WHAT CAN WE AUTOMATE? 279

may start out with only a few bricks. The fixtures that automate functional
tests in the middle layer are easy to write if the system is designed with those
tests in mind, so the sticks might pile up faster than the bricks. As teams mas-
ter TDD and unit test automation, the bottom layer starts to grow. When they
get traction, a team using TDD will quickly build out the brick foundation of
the test pyramid.

The testing pyramid is a good place to start looking at how test automation
can help an agile team. Programmers tend to focus on the bottom of the pyr-
amid, and they need plenty of time and training to get over the “hump of
pain” and get to the point where TDD is natural and quick. In traditional
teams, testers usually have no choice but to automate tests at the GUI level.
The whole-team approach used by agile teams means that testers pair with
programmers and help them get better at writing tests, which in turn solidi-
fies that brick foundation layer of the pyramid. Because tests drive develop-
ment, the whole team is always designing for maximum testability, and the
pyramid can grow to the right shape.

Programmers pair with testers to automate functional-level tests, filling out
the middle layer. For example, a tester and customer may prepare a 400-row
spreadsheet of test cases for a web services application. The programmer can
help figure out a way to automate those tests. Different team members may
have expertise in areas such as generating test data or using tools such as Ex-
cel macros, and all that knowledge spreads around the team. Working to-
gether, the team finds the best combinations of tools, test cases, and test data.

Involving the programmers in finding cost-effective ways to automate the
top-level GUI tests has multiple benefits. These efforts may give program-
mers a better understanding of the system’s “big picture,” and testers can learn
how to create more pliable, less straw-like GUI tests.

The more a team can work together and share knowledge, the stronger the
team, the application, and the tests will become. The Big Bad Wolf won’t
stand a chance. Let’s start by looking at what kind of tests we can automate
and then at what we shouldn’t even try.

WHAT CAN WE AUTOMATE?
Most types of testing you can think of benefit from automation. Manual unit
tests don’t go far toward preventing regression failures, because performing a
suite of manual tests before every check-in just isn’t practical. You can’t de-
sign code test-first through manual unit tests either. When programmers

See the bibliogra-
phy for a link to
Patrick Wilson-
Welsh’s discussion
of “flipping the
test pyramid”
right-side up.

280 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

can’t run tests quickly at the touch of a button, they may not be motivated
enough to run tests at all. We could manually test that different units of code
work together correctly, but automated component tests are a much more ef-
fective safety net.

Manual exploratory testing is an effective way to find functional defects, but
if we don’t have enough automated business-facing regression tests, we prob-
ably spend all of our time madly trying to keep up with manual regression
testing. Let’s talk about all of the different kinds of testing that can be done
well with automation.

To run automated tests, you need some kind of automated framework that
allows programmers to check in code often, run tests on that code, and create
deployable files. Let’s consider this first.

Continuous Integration, Builds, and Deploys

Any tedious or repetitive task involved in developing software is a candidate
for automation. We’ve talked about the importance of an automated build
process. You can’t build your automated test pyramid without this. Your
team needs the immediate feedback from the unit-level tests to stay on track.
Getting automated build emails listing every change checked in is a big help
to testers because they know when a build is ready to test without having to
bother the programmers.

Peril: Waiting for Tuesday’s Build
In a traditional environment, it is normal for testers to wait for a stable build,
even if that means waiting until next Tuesday. In an agile environment, if testers
don’t keep up with the developers, the stories get tested late in the game. If
the developers don’t get the feedback, such as suggestions and bugs, the
testers can lose credibility with the developers. Bugs won’t be discovered un-
til the developers are already on another story and do not want to be inter-
rupted to fix them until later.

Bugs pile up, and automation suffers because it can’t be completed. Velocity
is affected because a story cannot be marked “done” until it is tested. This
makes it harder to plan the next iteration. At the end of the release cycle,
your story testing runs into the end game and you may not have a successful
release. At the very least, you will have a stressful release.

See Chapter 7,
“Technology-
Facing Tests that
Support the Team,”
for examples of
build automation
tools.

WHAT CAN WE AUTOMATE? 281

An automated deployment process also speeds up testing and reduces errors.
In fact, the day Janet was editing this chapter, she messed up the deployment
because it was a manual process. It was pretty simple, but she was new to the
project and moved the file to the wrong place. Getting an automated deploy-
ment process in place went on Janet’s list of things to get done right away.
Lisa’s team implemented its continuous integration and build framework
first thing, and found it fairly easy and quick to do, although it requires con-
tinual care and feeding. Other teams, especially those with large, complex
systems, face much bigger hurdles.

We’ve talked with teams who had build times of two hours or more. This
meant that a programmer would have to wait for two hours after checking in
code to get validation that his check-in didn’t break any preexisting function-
ality. That is a long time to wait.

Most agile teams find an ongoing build longer than eight to ten minutes to
be unworkable. Even 15 minutes is much too long to wait for feedback, be-
cause check-ins will start stacking up, and testers will wait a long time to get
the latest, greatest build. Can you imagine how the developers working with
a build that takes two hours feel as they approach the end of an iteration or
release cycle? If they break any functionality, they’ll have to wait two more
hours to learn whether or not they had fixed it.

Many times, long builds are the result of accessing the database or trying to
test through the interface. Thousands of tests running against a large code-
base can tax the resources of the machine running the build. Do some pro-
filing of your tests and see where the bottleneck is. For example, if it is the
database access that is causing most of the problems, try mocking out the
real database and use an in-memory one instead. Configure the build pro-
cess to distribute tests across several machines. See if different software could
help manage resources better. Bring in experts from outside your team to help
if needed.

The key to speeding up a continuous integration and build process is to take
one small step at a time. Introduce changes one at a time so that you can
measure each success separately and know you are on the right track. To start
with, you may want to simply remove the most costly (in terms of time) tests
to run nightly instead of on every build.

A fast-running continuous integration and build process gives the greatest ROI
of any automation effort. It’s the first thing every team needs to automate.

282 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

When it’s in place, the team has a way to get quick feedback from the auto-
mated tests. Next, we look at different types of tests that should be automated.

Unit and Component Tests

We can’t overemphasize the importance of automating the unit tests. If your
programmers are using TDD as a mechanism to write their tests, then they
are not only creating a great regression suite, but they are using them to de-
sign high-quality, robust code. If your team is not automating unit tests, its
chances of long-term success are slim. Make unit-level test automation and
continuous integration your first priority.

API or Web Services Testing

Testing an API or web services application is easiest using some form of auto-
mation. Janet has been on teams that have successfully used Ruby to read in a
spreadsheet with all of the permutations and combinations of input variables
and compare the outputs with the expected results stored in the spread-
sheets. These data-driven tests are easy to write and maintain.

One customer of Janet’s used Ruby’s IRB (Interactive Ruby Shell) feature to
test the web services for acceptance tests. The team was willing to share its
scripts with the customer team, but the business testers preferred to watch to
see what happened if inputs were changed on the fly. Running tests interac-
tively in a semiautomated manner allowed that.

Testing behind the GUI

Testing behind the GUI is easier to automate than testing the GUI itself. Be-
cause the tests aren’t affected by changes to the presentation layer and work
on more stable business logic code, they’re more stable. Tools for this type of
testing typically provide for writing tests in a declarative format, using tables
or spreadsheets. The fixtures that get the production code to operate on the
test inputs and return the results can generally be written quickly. This is a
prime area for writing business-facing tests, understandable to both custom-
ers and developers that drive development.

Testing the GUI

Even a thin GUI with little or no business logic needs to be tested. The fast
pace of agile development, delivering new functionality each iteration, man-
dates some automated regression tests at the GUI level for most projects.

See the bibliogra-
phy for links to
build automation
tools and books
with more infor-
mation about im-
proving the build
process.

Chapter 7,
“Technology-
Facing Tests that
Support the
Team,” goes into
detail about some
of the tools that
can be used.

See Chapter 9,
“Toolkit for
Business-Facing
Tests that Support
the Team,” for
specific tool
examples.

WHAT CAN WE AUTOMATE? 283

Tool selection is key for successful GUI automation. The automated scripts
need to be flexible and easy to maintain. Janet has used Ruby and Watir very
successfully when the framework was developed using good coding practices,
just as if it were a production application. Time was put into developing the
libraries so that there was not a lot of rework or duplication in the code, and
changes needed could be made in one place. Making the code easy to main-
tain increased the ROI on these tests.

A point about testability here—make sure the programmers name their ob-
jects or assign IDs to them. If they rely on system-generated identifiers, then
every time a new object is added to the page, the IDs will change, requiring
changes to the tests.

Keep the tests to just the actual interface. Check things like making sure the
buttons really work and do what they are supposed to. Don’t try to try to test
business functionality. Other types of tests that can be automated easily are
link checkers. There is no need for someone to manually go through every
link on every page to make sure they hit the right page. Look for the low-
hanging fruit, automate the things that are simple to automate first, and
you’ll have more time for the bigger challenges.

Load Tests

Some types of testing can’t be done without automation. Manual load tests
aren’t usually feasible or accurate, although we’ve all tried it at one time or
another. Performance testing requires both monitoring tools and a way to
drive actions in the system under test. You can’t generate a high-volume at-
tack to verify whether a website can be hacked or can handle a large load
without some tool framework.

Comparisons

Visually checking an ASCII file output by a system process is much easier if
you first parse the file and display it in a human-readable format. A script to
compare output files to make sure no unintentional changes were made is a
lot faster and more accurate than trying to compare them manually. File
comparison tools abound, ranging from the free diff to proprietary tools
such as WinDiff. Source code management tools, and IDEs have their own
built-in comparison tools. These are essential items in every tester’s toolbox.
Don’t forget about creating scripts for comparing database tables when do-
ing testing for your data warehouse or data migration projects.

See Chapter 9,
“Toolkit for
Business-Facing
Tests that Support
the Team,” for ex-
amples of GUI test
frameworks.

See Chapter 11,
“Critiquing the
Product Using
Technology-
Facing Tests,” for
examples of load
test automation
tools.

Read more about
source code man-
agement tools and
IDEs in Chapter 7,
“Technology-
Facing Tests that
Support the
Team.”

284 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

Repetitive Tasks

As we work with our customers to better understand the business and learn
what’s valuable to them, we might see opportunities to automate some of
their tasks. Lisa’s company needed to mail several forms with a cover letter to
all of their clients. The programmers could not only generate the forms but
could also concatenate them with the cover letter and greatly speed up the
mailing effort. Lisa’s fellow tester, Mike Busse, wrote a spreadsheet macro to
do complex calculations for allocating funds that the retirement plan admin-
istrators had been doing manually. A lot of manual checklists can be replaced
with an automated script. Automation isn’t just for testing.

Data Creation or Setup

Another useful area for automation is data creation or setup. If you are con-
stantly setting up your data, automate the process. Often, we need to repeat
something multiple times to be able to recreate a bug. If that can be auto-
mated, you will be guaranteed to have the same results each time.

Many of our test schemas, including the ones used for automated regression
suites, use canonical data. This canonical or “seed” data was originally taken from
production. Some tables in the database, such as lookup tables, don’t change, so
they never need to be refreshed with a new copy. Other tables, such as those
containing retirement plan, employee, and transaction information, need to start
from Ground Zero whenever a regression suite runs.

Our database developer wrote a stored procedure to refresh each test schema
from the “seed” schema. We testers may specify the tables we want refreshed in a
special table called REFRESH_TABLE_LIST. We have an ant target for each test
schema to run the stored procedure that refreshes the data. The automated
builds use this target, but we use it ourselves whenever we want to clean up our
test schema and start over.

Many of our regression tests create their own data on top of the “seed” data. Our
Watir tests create all of the data they need and include logic that makes them re-
runnable no matter what data is present. For example, the script that tests an em-
ployee requesting a loan from his or her retirement plan first cancels any existing
loans so a new one can be taken out.

FitNesse tests that test the database layer also create their own data. We use a
special schema where we have removed most constraints, so we don’t have to
add every column of every table. The tests only add the data that’s pertinent to
the functionality being tested. Each test tears down the data it created, so subse-
quent tests aren’t affected, and each test is independent and rerunnable.

—Lisa

Lisa’s Story

WHAT SHOULDN’T WE AUTOMATE? 285

Cleaning up test data is as important as generating it. Your data creation
toolkit should include ways to tear down the test data so it doesn’t affect a
different test or prevent rerunning the same test.

We’ve looked at major areas where automation is required or at least useful.
Our opinion is that whenever you need to do a test or some testing-related
activity, first decide whether it can be aided by automation. In some cases,
automation won’t be appropriate. Let’s look at some of those.

WHAT SHOULDN’T WE AUTOMATE?
Some testing needs human eyes, ears, and intelligence. Usability and explor-
atory testing are two that fall into that category. Other tests that may not jus-
tify the automation investment are one-off tests and those that will never fail.

Usability Testing

Real usability testing requires someone to actually use the software. Automa-
tion might be helpful in setting up scenarios to subsequently examine for us-
ability. Observing users in action, debriefing them on their experiences, and
judging the results is a job for a person who understands that usability as-
pects of software cannot be automated. Logging user actions is helpful for
usability testing.

We had evaluated several GUI tools but decided to use Ruby with Watir. We kept
our tests limited to GUI functions only. One of our tests was checking to make sure
that correct validation messages were displaying on the screen. I was running the
tests and happened to be watching the screen because I hadn’t seen this particu-
lar test that one of the other testers created. My eyes caught something weird,
but the test passed, so I replayed it again. One of the programmers had added a
“$” to the screen, and the error message was displayed offset because of it. The
correct message was displayed, just not in the right place. In this instance, the
value in watching the tests run was huge because we were preparing to release
fairly soon, and we probably wouldn’t have caught that particular problem.

—Janet

It is possible to automate tests that make sure the GUI never changes, but you
need to ask yourself whether it’s worth the cost. Do you really care that a but-
ton has changed positions by one pixel? Do the results justify the effort? We
don’t think you should automate “look and feel” testing, because an automated

We discuss some
logging and moni-
toring tools in
Chapter 10,
“Business-Facing
Tests that Critique
the Product.”

Janet’s Story

286 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

script can only look for what you tell it to see. Automation would miss visual
problems that would jump out at a human.

Exploratory Testing

Similarly, exploratory testing may be speeded up with scripts to create test
data and jump through some setup steps, but it requires a skilled tester to de-
sign and execute the tests. One major goal of exploratory testing is to learn
more about the product by doing, and then use that information to improve
future development. Automated scripts won’t do that for you. However, as
we’ve said before, you won’t have time for exploratory testing without a lot of
other automated tests.

Tests that Will Never Fail

We’ve heard an argument that tests that will never fail don’t need to be auto-
mated. If a requirement is so obvious that there’s only one way to implement
it, and no programmer will ever look at that code later without knowing ex-
actly what it should do, the chances of someone introducing a defect in that
code are next to nothing. Let’s say we have a form with address fields. Do we
need an automated regression test to verify that the second street address line
is not required? After we’ve verified it manually, how likely is it that someone
will accidentally change it to a required field later? Even if someone did, it
wouldn’t be a catastrophic event. Someone else would notice it and people
could work around it easily until it was fixed.

Then again, a test for it would be easy to include. And programmer tricks
such as copy/paste errors happen all the time. If you feel comfortable that
one-time manual testing does the job and that the risk of future failures
doesn’t justify automating regression tests, don’t automate them. If your de-
cision turns out to be wrong, you’ll get another chance to automate them
later. If you aren’t sure, and it’s not terribly difficult to automate, go for it.

If you’re testing a life-critical system, even a very small risk of a regression
failure is too much. Use risk analysis to help decide what tests should be
automated.

One-Off Tests

Most times, manually executing a one-off test is sufficient. If automating a test
doesn’t have payoff, why do it? Sometimes automation is worth doing for a
one-off test.

See Chapter 10,
“Business-Facing
Tests that Critique
the Product,” for
more on explor-
atory testing and
tools that can fa-
cilitate it.

See Chapter 18,
“Coding and Test-
ing,” for more
about risk analysis
and how it relates
to testing.

WHAT MIGHT BE HARD TO AUTOMATE? 287

We recently did a story to pop up a warning message dialog when posting a pay-
roll, but the message should only come up during the first two weeks of January.
Automating a test for this functionality would require some way to simulate that
the current date was between January 1 and January 15. That’s not terribly hard
to do, but the consequences of a failure were fairly trivial, and we had more criti-
cal stories to deliver that iteration. Automating that test at that time just didn’t
have enough value to justify the cost, and the risk factor was low. We decided to
test it manually.

There are other cases where doing a one-off test seems the most intuitive but
automation is a better choice. We host sites for different business partners, and
each one has unique content, look, and feel. Values in the database drive the
correct behavior and content for each brand. Some of the data, such as fee
schedules based on asset values and numbers of participants, are highly com-
plex. It’s much easier and much more accurate to verify this data using FitNesse
tests. We have a set of fixtures that let us specify keys for the partner “brand” that
we want to test. We can easily plug in the appropriate expected results from the
spreadsheets that the business development staff creates for each new partner.
These tests aren’t part of our regression suite. They’re used one time only to vali-
date the new brand.

—Lisa

Tedious tasks may be worth automating, even if you don’t do them often.
Weigh the automation cost against the amount of valuable time eaten up by
manually doing the test. If it’s easy to do manually, and automating wouldn’t
be quick, just keep it manual.

WHAT MIGHT BE HARD TO AUTOMATE?
When code isn’t written test-first, or at least with test automation in mind,
it’s much harder to automate. Older systems tend to fall into this category,
but no doubt plenty of new code with the same untestable characteristics is
still being produced.

If you’re faced with working on existing code that doesn’t already have auto-
mated tests, you’re in for an uphill battle, but a winnable one. Legacy code
may have I/O, database access, as well as business logic and presentation code
intertwined. It may not be clear where to hook into the code to automate a
test. How do you get started automating tests on such a system? You certainly
can’t plan on automating everything below the GUI, because much of the
logic is in the presentation layer.

Lisa’s Story

288 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

There are at least a couple of different approaches that work well. The
“hump of pain” we talked about in Chapter 13, “Why We Want to Automate
Tests and What Holds Us Back,” is intimidating, but it can be overcome, and
then test automation will become much easier. Michael Feathers’ Working
Effectively With Legacy Code [2004] explains how to build a test harness
around existing code bases and refactor them to accommodate automation.
Even with legacy code, you can write tests to protect against introducing
new problems. This approach can work even on systems that lack structure
or aren’t object-oriented.

Lisa’s team decided on a different but equally effective approach. The team
members started ”strangling” the legacy code by writing all new features in a
new test-friendly architecture. They’re gradually replacing all of the old code
with code written test-first. When they do work on old code to fix bugs, or in
the cases where the old code needs updating, they simply add unit tests for all
of the code they change. A GUI smoke test suite covers the critical functions
of the rest of the legacy system that has no unit tests.

As with any automation project, approach the hard-to-automate code one
piece at a time, and address the highest risk areas first. Solve the testability
problem and find a way to write unit-level tests. The effort will pay off.

DEVELOPING AN AUTOMATION STRATEGY—WHERE
DO WE START?
A simple, step-by-step approach sounds incompatible with an automation
strategy, but in agile testing we try to understand the problem first. Deciding
where and how to start with automation requires a bit of thought and discus-
sion. As your team looks at testing challenges, you’ll need to consider where
automation is appropriate. Before you start searching for a particular auto-
mation tool, you’ll want to identify your requirements.

You need to understand what problem you are trying to solve. What are you
trying to automate? For example, if you have no test automation of any kind,
and you start by buying an expensive commercial test tool thinking it will au-
tomate all your functional tests, you may be starting in the wrong place.

We suggest you start at the beginning. Look for your biggest gain. The biggest
bang for the buck is definitely the unit tests that the programmers can do. In-
stead of starting at the top of the test pyramid, you may want to start at the
bottom, making sure that the basics are in place. You also need to consider

Chapter 7,
“Technology-
Facing Tests that
Support the Team,“
goes into more
detail about
different agile
approaches to
legacy code.

DEVELOPING AN AUTOMATION STRATEGY—WHERE DO WE START? 289

the different types of tests you need to automate, and when you’ll need to
have tools ready to use.

In this section, we assume you have automated Quadrant 1 unit and compo-
nent tests in place, and are looking to automate your business-facing tests in
Quadrants 2 and 3, or your Quadrant 4 technology-facing tests that critique
the product. We’ll help you design a good strategy for building your automa-
tion resources.

Think about the skills and experience on your team. Who needs the automa-
tion, and why? What goals are you trying to achieve? Understanding some of
these issues may affect your choice of tools and what effort you expend.
There is a section on evaluating tools at the end of this chapter.

Automation is scary, especially if you’re starting from scratch, so where do we
begin?

Where Does It Hurt the Most?

To figure out where to focus your automation efforts next, ask your team,
“What’s the greatest area of pain?” or, for some teams, “What’s the greatest
area of boredom?” Can you even get code deployed in order to test it? Do
team members feel confident about changing the code, or do they lack any
safety net of automated tests? Maybe your team members are more ad-
vanced, have mastered TDD, and have a full suite of unit tests. But they don’t
have a good framework for specifying business-facing tests, or can’t quite get
a handle on automating them. Perhaps you do have some GUI tests, but
they’re extremely slow and are costing a lot to maintain.

Peril: Trying to Test Everything Manually
If you’re spending all your time retesting features that you’ve tested before,
not getting to new features, and needing to add more and more testing,
you’re suffering from a severe lack of test automation. This peril means that
testers don’t have time to participate in design and implementation discus-
sions, regression bugs may creep in unnoticed, testing can’t keep up anymore
with development, and testers get stuck in a rut. Developers aren’t getting in-
volved in the business-facing testing, and testers don’t have time to figure out
a better way to solve the testing problems.

Your team can fix this by developing an automation strategy, as we describe in
this chapter. The team starts designing for testability and chooses and imple-
ments appropriate automation tools. Testers get an opportunity to develop
their technical skills.

290 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

Wherever it hurts the most, that’s the place to start your automation efforts.
For example, if your team is struggling to even deliver deployable code, you
need to implement an automated build process. Nothing’s worse than twid-
dling your thumbs while you wait for some code to test.

But, if performance puts the existence of your organization in danger, per-
formance testing has to be the top priority. It’s back to understanding what
problem you are trying to solve. Risk analysis is your friend here.

I worked on a legacy system that was trying to address some quality issues as well
as add new features for our main customer. There were no automated unit or
functional tests for the existing application, but we needed to refactor the code
to address the quality issues. The team members decided to tackle it one piece at
a time. As they chose a chunk of functionality to refactor, the programmers wrote
unit tests, made sure they passed, and then rewrote the code until the tests
passed again. At the end of the refactoring, they had testable, well-written code
and the tests to go with them. The testers wrote the higher-level functional tests at
the same time. Within a year, most of the poor-quality legacy code had been re-
written, and the team had achieved good test coverage just by tackling one
chunk at a time.

—Janet

Test automation won’t pay off unless other good development practices are in
place. Continuous integration running a robust suite of unit tests is a first step
toward automating other tests. Code that’s continually refactored for main-
tainability and good design will help increase the ROI on automation. Refac-
toring can’t happen without that good unit test coverage. These development
practices also need to be applied to the automated functional test scripts.

Multi-Layered Approach

While we recommend mastering one tool at a time, don’t expect too much
out of any one tool. Use the right tool for each need. The tool that works best
for unit tests may or may not be appropriate to automate functional tests.
GUI, load, performance, and security testing may each require a different
tool or tools.

Mike Cohn’s test pyramid concept (see Figure 14-2) has helped our teams put
their automation efforts where they do the most good. We want to maximize
the tests that have the best ROI. If the system architecture is designed for test-
ability, test automation will be less expensive, especially at the unit level.

Chapter 18, “Cod-
ing and Testing,”
has more informa-
tion on a simple
approach to risk
analysis.

Janet’s Story

DEVELOPING AN AUTOMATION STRATEGY—WHERE DO WE START? 291

Tests that go through the user interface usually have the lowest ROI, because
they’re expensive to maintain, but we do need them. They make up the small
tip of our pyramid We may choose to automate some of these tests, but the
majority of GUI tests are defined in business terms and probably are best left
as human interaction tests (i.e., manual tests).

The middle layer represents the functional tests that work directly with produc-
tion code, without a GUI or other layer in between. While they’re not as inex-
pensive to automate as unit-level tests, and provide feedback a bit more slowly,
the right tools allow them to have a good ROI. The fact that these tests can be
written in a language the business experts understand adds to their value.

There are many different layers in the application that can be tested indepen-
dently. In his book xUnit Test Patterns [2007], Gerard Meszaros refers to this
as the Layer Test pattern. He cautions that when trying to test all of the layers
of the application separately, we still have to verify that the layers are hooked
up correctly, and this may require at least one test of the business logic
through the presentation layer.

As my team built our automation framework one step at a time, we gathered an
arsenal of tools. After implementing a continuous build framework with Ant and
CruiseControl, we mastered JUnit for unit testing. We knew that unit test automa-
tion is the quickest and cheapest way to automate, and provides the fastest feed-
back to the programmers.

Our legacy system had no automated tests, so we built a GUI regression test suite
with Canoo WebTest. This provided good payback because the WebTest scripts
were specified, not programmed. They were quick to write and easy to maintain.

After JUnit and WebTest were in place, we experimented with FitNesse and found
it worked well for functional testing behind the GUI. We found automating with
FitNesse to go relatively quickly. Although FitNesse tests are significantly more ex-
pensive to produce and maintain than unit tests, their value in driving develop-
ment and promoting collaboration among customers, programmers, and testers
kept the ROI high.

All of these tools were easy to learn, implement, and integrate with the build pro-
cess, and provided continual feedback about our regression issues. They were im-
portant considerations when we were deciding on our test automation strategy.

—Lisa

When evaluating the payback of your automation efforts, consider less tangi-
ble aspects such as whether the tool promoted collaboration between the

Lisa’s Story

292 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

technical and customer teams. A primary reason to write tests is to help
guide development. If the process of writing your automated acceptance tests
results in a thorough understanding of business requirements, that’s plenty
of payback, even if the tests never find a single regression bug later on.

Think about Test Design and Maintenance

Think about all of the manual test scripts you’ve written in your life. Don’t
you just wish those all would have been automated? Wouldn’t your life have
been a lot easier? We believe that all scripted tests should be automated. Let’s
get started converting those manual scripted tests.

After you get started, it can be quite easy to automate tests. For example, when
you have a working FitNesse fixture, adding more test cases requires little ef-
fort. This is great when you have a lot of different permutations to test. You’ll
probably test more conditions than you would if all your testing was done
manually. When Lisa’s team members rewrote their retirement plan’s loan sys-
tem, they could test hundreds of different possibilities for loan payment pro-
cessing via FitNesse tests. What happens when three loan payments are
processed on the same day? If someone doesn’t make any payments for three
months, and then sends in a large payment, is the interest calculated and ap-
plied correctly? It was easy to write automated tests to find out.

That’s a great advantage, but it has a down side. Now the team has dozens, or
even hundreds, of test cases to maintain. What if the rules about calculating
the amount of interest for a loan payment change a year from now? This
could require updating every test. If your test tool doesn’t easily accommo-
date making changes to existing tests, your big suite of automated tests can
turn into a headache.

End-to-end tests are particularly tricky to automate because they have the
most potential to need maintenance as business rules change. How do we
balance the need for automation with the cost?

Test Design

Remember to start with the thin slice or steel thread of the feature you’re test-
ing. Approach automation just as programmers approach coding. Get one
small unit of the steel thread working, and then move on to the next. After
you’ve covered the whole thin slice, go back and flesh it out.

Chapter 8,
“Business-Facing
Tests that Support
the Team,” explains
more about thin
slices.

DEVELOPING AN AUTOMATION STRATEGY—WHERE DO WE START? 293

Choose your test pattern thoughtfully. Automate all of the test cases you
need, but no more, and automate them at the lowest level that you can. Limit
the scope of each test case to one test condition or one business rule. Under-
stand the purpose of the test. Avoid dependencies between tests, because they
quickly increase complexity and maintenance expense.

Consider Options

As we’ve mentioned before, the lower the level at which you automate a test,
the better the ROI. Push test automation as far down the pyramid as you can.
If you have good coverage in your unit and code integration tests, you don’t
need to automate as many functional tests. With solid coverage at the lower
levels, it might be enough to do end-to-end tests manually to verify the sys-
tem’s behavior. Use risk analysis to help you decide.

User Interface

The user interface does need to be tested. In some situations, test automation
at the GUI level is critical. Perhaps your team is using third-party GUI con-
trols, and you aren’t sure how they will behave. If your risk and ROI analysis
supports a lot of automation at the GUI level, make the investment.

If you do automate at the higher levels, don’t go overboard and automate ev-
ery possible path through the system. You don’t have to keep every auto-
mated test created during the development phase in the regression suite;
consider tradeoffs of build time and the chance of finding defects. Focus your
efforts on covering every important path through the code at the unit, code
integration, and functional levels. You’ll get a much better payback.

Strike a Balance

Striking a balance isn’t an agile principle, it’s just common sense. You need a
good-enough solution right now, but it doesn’t have to be perfect. Does the
tool provide the results you need right now? Does it provide an adequate re-
turn on the resources needed to use it for automation? If so, go ahead and use
it, and budget time later to look for alternatives. You can improve your auto-
mation framework over time. The most important factor is whether your au-
tomation tools fit your particular situation right now.

Don’t slide the other way, and think, “OK, we can generate a bunch of scripts
with this record tool, get our immediate testing done, and refactor the scripts
later to make them maintainable.” While you don’t need to keep searching for
the perfectly ideal automation solution, you do need a solution that doesn’t

See Chapter 9,
“Toolkit for
Business-Facing
Tests that Support
the Team,” for
more information
about effective
test design.

294 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

add to your team’s technical debt. Find a balance between “It finds the bugs
we need to know about and doesn’t cost too much to maintain” and “This is
the most elegant and cool solution we can find.”

Choosing the Right Tools

It’s cool that we have so many tools available to help us solve our automation
problems. Don’t go for more sophistication than you need. Lisa’s coworkers
have found that a spreadsheet that retrieves data from the database and per-
forms calculations independently of the system is a powerful tool, both for
driving development and for verifying the application’s calculations.

We usually minimize test automation at the GUI layer, but there are situa-
tions where more GUI automation is appropriate. If the user makes a change
at X, what else changes? Some problems only manifest themselves at the GUI
level. Lisa tested a bug fix that addressed a back-end problem when retire-
ment plan participants requested a distribution of money from their ac-
counts. The change was surrounded by unit tests, but it was a GUI regression
test that failed when the distribution form failed to pop up upon request.
Nobody anticipated that a back-end change could affect the GUI, so they
probably wouldn’t have bothered to test it manually. That’s why you need
GUI regression tests, too.

We’ve talked about some disadvantages of record/playback tools, but they’re
appropriate in the right situation. You may be using a record/playback tool
for a good reason: Maybe your legacy code already has a suite of automated
tests created in that tool, your team has a lot of expertise in the tool, or your
management wants you to use it for whatever reason. You can use recorded
scripts as a starting point, then break the scripts into modules, replace hard-
coded data with parameters where appropriate, and assemble tests using the
modules as building blocks. Even if you don’t have much programming ex-
perience, it’s not hard to identify the blocks of script that should be in a mod-
ule. Login, for example, is an obvious choice.

Record/playback may also be appropriate for legacy systems that are de-
signed in such a way that makes unit testing difficult and hand-scripting tests
from scratch too costly. It’s possible to build a record and playback capability
into the application, even a legacy application. With the right design, and the
use of some human-readable format for the recorded interaction, it’s even
possible to build playback tests before the code is built.

DEVELOPING AN AUTOMATION STRATEGY—WHERE DO WE START? 295

GUI Test Automation: From the Dark Ages to Successful
Automation in an Agile Environment
Pierre Veragen, SQA Lead at iLevel by Weyerhaeuser, explains how his team
used a tool that provided both record/playback and scripting capability pro-
ductively in a waterfall environment, and then leveraged it when the com-
pany adopted agile development.

Back in our waterfall development days, in 2000, we started doing GUI
test automation using a record-playback approach. We quickly accumu-
lated tens of thousands of lines of recorded scripts that didn’t meet our
testing needs. When I took over 18 months later, I quickly became con-
vinced that the record-playback approach was for the dinosaurs.

When we had a chance to obtain a new test automation tool at the end
of 2003, we carefully evaluated tools with these criteria in mind: record
capability to help us understand the scripting language, and the ability to
build an object-oriented library to cover most of our needs, including
test reporting. At the time, TestPartner from CompuWare fulfilled all of
our requirements.

We started using TestPartner on a highly complex, CAD-with-engineering
application, built in Visual Basic 6, still using a waterfall process. Before
we started automating tests, our releases were quickly followed by one
or more patches. We focused our automation efforts toward checking
the engineering calculations through the GUI, and later, the actual posi-
tion of the CAD details. These tests included hundreds of thousands of
individual verification points, which could never have been done by
hand. Within a year, having added a solid set of manual tests of the user
interaction, in addition to our automated tests, we were releasing robust
software without the usual follow-up patches. We felt confident about
our combination of manual and automated tests, which didn’t include a
single line of recorded scripts.

In 2004, our group moved to Visual Basic .NET. I spent several months
adapting our TestPartner library to activate .NET controls. In 2006, we
adopted an Agile methodology. Building on lessons previously learned in
the non-Agile world, we achieved astonishing results with test automa-
tion. By the end of 2006, team members were able to produce maintain-
able GUI test scripts and library components after just a few days of
training. At the same time, the team embraced unit testing with NUnit
and user acceptance tests with FitNesse.

As of this writing, issues are caught at all three levels of our automated
testing: Unit, FitNesse, and GUI. The issues found by each of the three
testing tiers are of a different nature. Because everything is automated
and triggered automatically, issues are caught really fast, in true Agile
fashion. Each part of our test automation is bringing value.

296 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

Some people feel resources would be better spent on architecture and
design, so that GUI test automation isn’t needed. In our development
group, each team made its own decision about whether to automate
GUI tests.

In case you decide to use GUI test automation, here’s some advice: Stay
away from recorded scripts, invest in maintainability, and minimize the
required GUI testing with a good architecture of the application. It is my
experience that investing in good GUI test automation practices will al-
ways pay off.

Pierre’s advice reflects well how good development practices, especially those
followed in agile development projects, apply to automated test develop-
ment as well as to production code development.

Built-In Record & Playback
Gerard Meszaros, agile coach and author of xUnit Test Patterns [2007], de-
scribes a situation where the simplest approach turned out to be record/
playback. We’ve mentioned drawbacks to record/playback tools, but if you
design your code to support them, they can be the best approach.

I was asked to help a team that was porting a “safety sensitive” applica-
tion from OS2 to Windows. The business was very concerned about the
amount of time it would take it to retest the ported system and the like-
lihood that the team would miss important bugs. The system was de-
signed to only offer the user valid choices that would not compromise
safety. They considered using a test recording tool to record tests on the
old system and play them back on the new system, but there were no
test recording tools available for both OS2 and Windows that could deal
with windows drawn using ASCII characters. After reviewing the architec-
ture of the system, we determined that writing xUnit tests would not be
a cost-effective way to test the system because much of the business
logic was embedded in the user interface logic, and refactoring the
code to separate them would be too risky and time-consuming. Instead,
we proposed building a Record & Playback test capability right into the
system before we ported it.

Even though the rest of the project was milestone-driven, we developed
the built-in test mechanism in a very agile way. Each screen required at
least one new hook and sometimes several. We started with the most
frequently used screens, adding the necessary hooks to record the user’s
actions and the systems responses to them into an XML file. We also
added the hooks to play back the XML and determine the test results.
Initially, we focused our efforts on proving the concept by hooking only

DEVELOPING AN AUTOMATION STRATEGY—WHERE DO WE START? 297

Some agile teams get value from commercial or open source test tools, while
others prefer a completely customized approach. Many testers find value writ-
ing simple scripts in a scripting language such as Ruby, or a shell, to automate
mundane but necessary tasks, generate test data, or drive other tools. Books
such as Everyday Scripting with Ruby for Teams, Testers, and You give a road-
map for this approach. If you’re a tester without a strong programming back-
ground, we encourage you to pick up a book, find an online tutorial, or take a
class on a scripting language, and see how easy it can be to write useful scripts.

What we’re trying to tell you is that you can use many different tools. Look at
the problem you are trying to solve and decide as a team the easiest and most
effective way to solve it. Every so often, step back and take a look at the tools

the screens we needed to record and then playing back a simple but re-
alistic test. After everyone was convinced the approach would work, we
prioritized the screens with respect to how much benefit it would pro-
vide. We implemented the hooks one by one until we could automate a
significant portion of the tests. We also built an XSLT stylesheet that
would format the XML in a Fit-like way, with green cells indicating ac-
ceptable results and red cells indicating a failed test step.

In the meantime, the client was identifying the test scenarios that
needed test cases. As we finished enough screens to record a particular
test, the client would “acceptance test” our hooks by recording and
playing back (still on OS2) the test(s) that were waiting for those hooks.
When all of the hooks were in place, we could go ahead and port the
code, including the test hooks, from OS2 to Windows. After verifying
successful playback on OS2, the client would move the XML test files
over to Windows and run them against the ported version of the code.
The client found this quite easy to do and was able to record a large
number of tests in a relatively short period of time. Because the tests
were recording actions and responses in business terms, the tests were
fairly easy to understand. The client loved the capability, and still raves
about how much effort it saved and how much more confidence it has in
the product. “Not only did this save tens of man-years of testing effort,
but it even uncovered hidden unknown bugs in the legacy system, which
we had considered to be the gold standard.”

In Gerard’s story, the team worked together to retrofit testability onto a sys-
tem that wasn’t designed for testability. They gave their customers a way to
capture their test scenarios on one platform and play them back on both
platforms to verify the successful port. This is a stellar example of the whole-
team approach. When everyone on the team collaborates on a test automa-
tion solution, there’s a much better chance it’s going to succeed.

See more exam-
ples of specific
tools for business-
facing tests in
Chapter 9, “Tool-
kit for Business-
Facing Tests that
Support the
Team.”

298 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

you’re using. Is everyone on the team happy with them? Are you missing prob-
lems because you don’t have the right tools? Budget time to explore new tools
and see if they might fill gaps or replace a tool that isn’t paying off.

If your team is new to agile development, or working on a brand-new project,
you might be faced with choosing tools and setting up test environments
during the early iterations, when you also might be working on high-risk sto-
ries. Don’t expect to be able to deliver much business value if you’re still cre-
ating your test infrastructure. Plan in lots of time for evaluating tools, setting
up build processes, and experimenting with different test approaches.

APPLYING AGILE PRINCIPLES TO TEST AUTOMATION

Every team, every project, and every organization has a unique situation with
unique automation challenges. Each has its own culture, history, resources,
business pressures, products, and experience. No matter what your team’s
situation, you can use the agile principles and values discussed in Chapter 2
to help you find solutions. Concepts such as courage, feedback, simplicity,
communication, continuous improvement, and responding to change aren’t
just agile ideas—they’re qualities that are common to all successful teams.

Keep It Simple

The agile maxim of “do the simplest thing that could possibly work” applies to
tests as well as code. Keep the test design simple, keep the scope minimal, and
use the simplest tool that will do the job.

Simplicity is a core agile value for a good reason. The best place to start is the
simplest approach you can think of. However, doing the simplest thing doesn’t
mean doing the easiest thing. It involves really thinking about what you need
now and taking baby steps to get there. By keeping things simple, if you do
make a bad choice, you won’t go too far off track before realizing the error of
your ways.

It’s easy to get involved in a task and slip away from the basics into some in-
triguing challenge. Weigh the ROI of every automation task before you do it.
Automation is fun (when you get past the scary part of getting started). It’s
tempting to try something difficult just because you can. Like all other as-
pects of testing in an agile development project, the only way to keep up is to
do only the minimum required.

Use the simplest tool you can get away with. Remember the test pyramid. If a
customer-facing test can be most easily automated at the unit level, do it

APPLYING AGILE PRINCIPLES TO TEST AUTOMATION 299

there. Lisa sometimes writes test cases in FitNesse, only to learn the program-
mers can automate them much faster as JUnit tests. Conversely, sometimes
the programmers use FitNesse for TDD instead of JUnit, because the code
they’re writing lends itself to testing in one of the FitNesse fixture formats.

Iterative Feedback

Short iterations allow us to experiment with various automation approaches,
evaluate results, and change course as quickly as needed. Commit to an auto-
mation effort, such as developing a test framework in-house or implement-
ing an open source tool for at least a couple of iterations. After each iteration,
look at what’s working and what’s not working. Think of ideas to overcome
problems, and try those in the next iteration. If it’s not the right solution, try
something else for a few iterations. Don’t get sucked into a quagmire where
you’ve put so many resources into a tool, and have so many tests that use it,
that you feel you can’t switch tools. Between the many open source and com-
mercial tools, plus programmers’ ability to write home-grown test tools,
there’s no reason to settle for less than the optimum tool.

One of my early XP teams struggled to find a good way to automate customer-
facing acceptance tests for a Java-based web application. This was back when
there were far fewer tool options for agile teams. First, we tried an open source
tool that simulated a browser, but it lacked the features we required. It just wasn’t
quite robust enough. We discussed this at the next retrospective.

We decided to try using the unit testing tool for testing behind the GUI for the
next two iterations. By committing to two iterations, we felt we were giving our-
selves enough time to give the tool a good try, but not so much time that we
would have too much invested if it weren’t the right solution. The customers
found the unit tests hard to read, and there was logic in the GUI we couldn’t test
with this tool.

After another discussion during our retrospective, we then committed to two iter-
ations of using a vendor GUI test tool I had used extensively on previous projects.
The Java programmers found it slow going because the tool used a proprietary
scripting language, but it worked well enough to do the minimum automation
needed. After two iterations, we decided that it wasn’t ideal, but at the time
there weren’t a lot of other options, and it was the best one we had.

In hindsight, we should have kept looking for a better option. Perhaps we could
have developed our own test harness. We were able to automate about 60% of
the regression tests above the unit level using the vendor tool, which seemed
great at the time. If we had pushed ourselves a little more, we might have done a
lot better.

—Lisa

Lisa’s Story

300 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

Use iterations to your advantage. They facilitate a step-wise approach. If your
idea’s a dud, you’ll know quickly and have a chance to try a different one.
Don’t be afraid to keep looking, but don’t keep looking for the perfect solu-
tion if one you try performs adequately.

Whole-Team Approach

Agile development can’t work without automation. Fortunately, the whole-
team approach, which we explored in Chapter 1, means that a wider range of
skills and resources are available to find and implement a useful automation
strategy. Attacking the problem as a team means it’s more likely that code will
be designed for testability. Programmers, testers, and other team members
will collaborate to automate tests, bringing multiple viewpoints and skill sets
to the effort.

The whole-team approach helps overcome the fear barrier. Automation tasks
can be overwhelming to start with. Knowing there are other people with dif-
ferent skills and experience to help gives us courage. Being able to ask for and
receive help gives us confidence that we can achieve adequate coverage with
our automated tests.

My current team made a commitment to automating regression tests at all levels
where it made sense. Here are some examples of where I’ve asked for help to suc-
ceed with automation.

Early on, when we had no automated tests at all and the developers were trying
to master test-driven development, we settled on Canoo WebTest for the GUI
smoke tests. I needed a bit of help understanding how to configure WebTest to
run in our environment, and I needed a lot of help to run the tests from the auto-
mated build process. I asked our system administrator (who was also one of the
programmers) to help. We quickly got a suite of tests running in the build.

Later, I really wanted to try FitNesse for functional testing behind the GUI. I had to
be patient while the programmers were still getting traction with the automated
unit tests. The team agreed to try the tool, but it was hard to find time to start us-
ing it. I picked a story that seemed suited to FitNesse tests, and asked the pro-
grammer working on the story if I could pair with him to try some FitNesse tests.
He agreed, and we got some tests automated in FitNesse. The programmer found
it easy and worthwhile, and gave a good report to the rest of the team.

After that, it wasn’t hard to approach each programmer, suggest writing FitNesse
tests for the story he was working on, and let him see the results. The FitNesse
tests found test cases the programmer hadn’t thought of, and they saw the bene-
fit right away. When everyone on the team had some experience with the tool,
they were not only happy to automate the tests, but started designing code in a
way that would make writing FitNesse fixtures easier.

Lisa’s Story

APPLYING AGILE PRINCIPLES TO TEST AUTOMATION 301

When our Ruby expert, who designed most of our Watir test suite, left the com-
pany, I was quite concerned about maintaining our huge suite of tests as well as
being able to code new ones. My Ruby expertise was not as good as his (plus, we
were down to just one tester, so time was an issue). Every programmer on the
team went out, bought a book on Ruby, and helped when I had problems updat-
ing scripts to work when the code changed. One programmer even wrote a new
script to test a new story when I didn’t have time for that task. When we hired a
new tester, he and I were able to handle the care and feeding of the Watir scripts,
so the programmers no longer needed to take on those tasks.

I know I can ask teammates for help with automation issues, and the entire team
sees automation as a priority, so the programmers always think about testability
when designing the code. This is an example of the whole-team approach at work.

—Lisa

Specialized technology-facing tests such as security or load testing might re-
quire bringing in experts from outside the team. Some companies have spe-
cialist teams that are available as shared resources to product teams. Even
while taking advantage of these resources, agile teams should still take re-
sponsibility for making sure all types of testing are done. They may also be
surprised to find that team members may have the skills needed if they take a
creative approach.

Some organizations have independent test teams that do post-development
testing. They may be testing to ensure the software integrates with other sys-
tems, or conducting other specialized testing such as large-scale performance
testing. Development teams should work closely with these other teams, us-
ing feedback from all testing efforts to improve code design and facilitate
automation.

Taking the Time to Do It Right

Solving problems and implementing good solutions takes time. We must help
our management understand that without enough time to do things the right
way, our technical debt will grow, and our velocity will slow. Implementing
solutions the “right” way takes time up front but will save time in the long
term. Consider the time it takes for brainstorming ideas, solutions, formal
training, and for on-the-job learning.

Your organization’s management is understandably interested in producing
results as quickly as possible. If management is reluctant to give the team time
to implement automation, explain the trade-offs clearly. Delivering some fea-
tures in the short term without automated regression tests to make sure they

Chapter 11,
“Critiquing the
Product Using
Technology-
Facing Tests,” talks
about technology-
facing tests such as
these and differ-
ent approaches to
handling them.

302 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

keep working will have a big cost down the line. As your team accumulates
technical debt, you’ll be less able to deliver the business value management
needs. Work toward a compromise. For example, cut the scope of a feature
but keep the essential value, and use automation to deliver and maintain a
better product.

We always have deadlines, and we always feel pressed for time. The tempta-
tion to just go back to doing things the way we always have, like executing re-
gression tests manually and hoping for the best, is always there even though
we know that doesn’t work. There is never enough time to go back and fix
things. During your next planning meeting, budget time to make meaningful
progress on your automation efforts.

Our team focuses on taking time for good design, a strong set of automated tests,
and ample time for exploratory testing. Quality, not speed, has always been our
goal. Our production problems cost a lot to fix, so the whole company is on
board to take the time to prevent them. Sometimes we don’t pick the right de-
sign, and we aren’t afraid to rip it out and replace it when we realize it.

Naturally there are business tradeoffs, and the business decides whether to pro-
ceed with known risks. We work to explain all of the risks clearly and give exam-
ples of potential scenarios.

Here are a couple of recent examples of taking the time to do things right. We
started a theme to make major changes to the account statements for the retire-
ment plans. One of the programmers, Vince Palumbo, took on the task of collect-
ing additional data to be used for the statements. He decided to write robust unit
tests for the data collection functionality, even though this meant the story would
have to continue on to the next iteration. Writing the unit tests took a great deal
of time and effort, and even with the tests, the code was extremely complex and
difficult to do. A couple of iterations later, another programmer, Nanda Lankala-
palli, picked up another story related to the data collection and was pleasantly
surprised to find new unit tests. He was able to make his changes quickly, and the
testing effort was greatly reduced because the unit tests were in place.

Later, we found we had missed an edge case where some calculations for the
change in account value were incorrect. The combination of automated unit tests
and a great deal of exploratory testing were not enough to catch all of the scenar-
ios. Still, having the tests meant Vince could write his corrected code test-first and
feel more confident that the code was now correct.

Another recent example concerned processing of incoming checks. The business
wanted to shorten the two-step process to one step, which meant the money
would be invested in the retirement plan accounts two days earlier than was then
possible. The existing process was all written in legacy code, without unit tests.
We discussed whether to rewrite the processing in the new architecture. Our
product owner was concerned about the amount of time this might take. We felt

Lisa’s Story

APPLYING AGILE PRINCIPLES TO TEST AUTOMATION 303

it would take just as long to change the existing code as to completely rewrite it,
because the old code was difficult to understand and had no unit tests at all. We
decided on the rewrite, which not only reduced the risk of problems in this criti-
cal functionality but also gave us the opportunity to provide a couple of extra fea-
tures at little extra cost. So far, this strategy has proven worthwhile.

—Lisa

Allow yourself to succeed. Work at a sustainable pace. Take the time to refac-
tor as you go or you’ll end up with a mess eventually. As testers, we always
have many different tasks to do. If you’re learning a new tool or trying to au-
tomate new tests, don’t multitask. Find a big block of time and focus. This is
hard, but switching gears constantly is harder.

If business stakeholders are impatient for your team to “just get it done,” ana-
lyze the problem with them. What are the risks? How much will a production
problem cost? What are the benefits of releasing a quick hack? How much
technical debt will it add? What’s the long-term return on investment of a
solid design supported with automated tests? How will each approach affect
company profitability and customer satisfaction? What about the intangible
costs, such as the effect that doing poor-quality work has on team morale?
Sometimes the business will be right, but we’re betting that you’ll usually find
that up-front investment pays off.

Learn by Doing

Everyone learns in different ways, but when you’ve decided how you’re going
to automate a test, jump in and start doing it. In Everyday Scripting with Ruby
for Teams, Testers, and You [2007], Brian Marick advises to learn to program
by writing a program. Make mistakes! The more problems you have, the
more you’ll learn. Getting someone to pair with you will help speed up learn-
ing, even if neither one of you is familiar with the tool or the language.

If you don’t have anyone to pair with, talk to the “rubber ducky”: Imagine
you’re describing the problem to a coworker. The process of explaining can
often make the cause of the problem jump into view. Simply reading a test
aloud to yourself can help you find the weaknesses in it.

Apply Agile Coding Practices to Tests

Tests are just as valuable as production code. In fact, production code isn’t
much without tests to support it. Treat your tests the same way you treat all
code. Keep it in the same source code control tool as your production code.

304 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

You should always be able to identify the versions of test scripts that go with a
particular version of code.

Pairing, refactoring, simple design, modular and object-oriented design, good
standards, keeping tests as independent as possible—all of the qualities of good
code are also qualities of good automated tests. Agile development is some-
times perceived by the uninformed to be chaotic or lax, when in fact it is highly
disciplined. Undertake your automation tasks with the greatest discipline, pro-
ceeding in small steps, checking in each step that succeeds. If you’re program-
ming automated scripts, write them test-first, just as any agile programmer
would write production code. Keep simplicity in mind, though. Don’t write
fancy test scripts with lots of logic unless there’s a good ROI. Those tests need
testing and cost more to maintain. Specify tests when you can instead of coding
them, and always go with the simplest approach possible.

We can’t emphasize it enough: Test automation is a team effort. The varying
experience, skills, and perspectives of different team members can work to-
gether to come up with the best approach to automation. Innovate—be cre-
ative. Do what works for your unique situation, no matter what the “common
wisdom” says.

Automation tools are just one piece of the puzzle. Test environments and test
data are essential components. Let’s look at test data next.

SUPPLYING DATA FOR TESTS

No matter what tool we use to automate tests, the tests need data to process.
Ideally, they need realistic data that matches production data. However, pro-
duction databases usually contain lots and lots of data, and they can be
highly complex. Also, database access slows down tests exponentially. Like so
much of agile testing, it’s a balancing act.

Data Generation Tools

As we write this book, there are several cool tools available to generate test
data for all kinds of input fields and boundary conditions. Open source and
commercial tools such as Data Generator, databene benerator, testgen,
Datatect, and Turbo Data are available to generate flat files or generate data
directly to database tables. These tools can generate huge varieties of differ-
ent types of data, such as names and addresses.

SUPPLYING DATA FOR TESTS 305

It’s also fairly easy to generate test data with a home-grown script, using a
scripting language such as Ruby or Python, a tool such a Fit or FitNesse, or a
shell script.

Our Watir scripts create randomized test data inputs, both to ensure they are re-
runnable (they’re unlikely to create an employee with the same SSN twice), and
to provide a variety of data and scenarios. The script that creates new retirement
plans produces plans with about 200 different combinations of options. The script
that tests taking out a loan randomly generates the frequency, reason, and term of
the loan, and verifies that the expected payment is correct.

We have utility scripts to create comma-separated files for testing uploads.
For example, there are several places in the system that upload census files with
new employee information. If I need a test file with 1,000 new employees with
random investment allocations to a retirement plan, I can simply run the script
and specify the number of employees, the mutual funds they’re investing in,
and the file name. Each record will have a randomly generated Social Security
Number, name, address, beneficiaries, salary deferral amounts, and investment
fund allocations. Here’s a snippet of the code to generate the investment
calculations.

33% of the time maximize the number of funds chosen, 33% of the time
select a single fund, and 33% of the time select from 2-4 funds
 fund_hash = case rand(3)
 when 0: a.get_random_allocations(@fund_list.clone)
 when 1: a.get_random_allocations(@fund_list.clone, 1)
when 2: a.min_percent = 8;
a.get_random_allocations(@fund_list.clone, rand(3) + 2)
 end
 emp['fund_allocations'] = fund_hash_to_string(fund_hash)

Scripts like these have dual uses, both as regression tests that cover a lot of differ-
ent scenarios and exploratory test tools that create test data and build test sce-
narios. They aren’t hard to learn to write (see the section “Learning by Doing“
earlier in this chapter).

—Lisa

Scripts and tools to generate test data don’t have to be complex. For example,
PerlClip simply generates text into the Windows clipboard so it can be pasted
in where needed. Any solution that removes enough tedium to let you dis-
cover potential issues about the application is worth trying. “The simplest
thing that could possibly work” definitely applies to creating data for tests.
You want to keep your tests as simple and fast as possible.

Lisa’s Story

306 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

Avoid Database Access

Your first choice for testing should try to have tests that can run completely
in-memory. They will still need to set up and tear down test data, but the
data won’t store in a database. Each test is independent and runs as quickly as
any test could. Database access means I/O and disks are inherently slow. Ev-
ery read to the database slows down your test run. If your goal is to give fast
feedback to the team, then you want your tests to run as quickly as possible.
A fake object such as an in-memory database lets the test do what it needs to
do and still give instant feedback.

One of our build processes runs only unit-level tests, and we try to keep its run-
time less than eight minutes, for optimum feedback. The tests substitute fake ob-
jects for the real database in most cases. Tests that are actually testing the
database layer, such as persisting data to the database, use a small schema with
canonical data originally copied from the production database. The data is realis-
tic, but the small amount makes access faster.

At the functional test level, our FitNesse test fixtures build data in-memory wher-
ever possible. These tests run quickly, and the results appear almost instanta-
neously. When we need to test the database layer, or if we need to test legacy
code that’s not accessible independently of the database layer, we usually write
FitNesse tests that set up and tear down their own data using a home-grown data
fixture. These tests are necessary, but they run slowly and are expensive to main-
tain, so we keep them to the absolute minimum needed to give us confidence.
We want our build that runs business-facing tests to provide feedback within a
couple of hours in order to keep us productive.

—Lisa

Because it’s so difficult to get traction on test automation, it would be easy to
say “OK, we’ve got some tests, and they do take hours to run, but it’s better
than no tests.” Database access is a major contributor to slow tests. Keep tak-
ing small steps to fake the database where you can, and test as much logic as
possible without involving the database. If this is difficult, reevaluate your
system architecture and see if it can be organized better for testing.

If you’re testing business logic, algorithms, or calculations in code, you’re in-
terested in the behavior of the code itself given certain inputs; you don’t care
where the data comes from as long as it accurately represents real data. If this
is the case, build test data that is part of the test and can be accessed in mem-
ory, and let the production code operate from that. Simulate database access
and objects, and focus on the purpose of the test. Not only will the tests run
faster, but they’ll be easier to write and maintain.

Lisa’s Story

Comprehensive
explanations and
examples of vari-
ous types of test
doubles can be
found in xUnit Test
Patterns. See the
bibliography for
more information
on that and tools
for working with
test stubs and with
mock and fake
objects.

Tools such as DbFit
and NdbUnit can
simplify database
testing and en-
able test-driven
database develop-
ment; see the bib-
liography for more
resources.

SUPPLYING DATA FOR TESTS 307

When generating data for a test, use values that reflect the intent of the test,
where possible. Unless you’re completely confident that each test is indepen-
dent, generate unique test values for each test. For example, use timestamps
as part of the field values. Unique data is another safety net to keep tests from
infecting each other with stray data. When you need large amounts of data,
try generating the data randomly, but always clean it up at the end of the test
so that it doesn’t bleed into the next test. We recognize that sometimes you
need to test very specific types of data. In these cases, randomly generated
data would defeat the purpose of the test. But you may be able to use enough
randomization to ensure that each test has unique inputs.

When Database Access Is Unavoidable or Even Desirable

 If the system under test relies heavily on the database, this naturally has to be
tested. If the code you’re testing reads from and/or writes to the database, at
some point you need to test that, and you’ll probably want at least some re-
gression tests that verify the database layer of code.

Setup/Teardown Data for Each Test

Our preferred approach is to have every test add the data it needs to a test
schema, operate on the data, verify the results in the database, and then de-
lete all of that test data so the test can be rerun without impacting other sub-
sequent tests. This supports the idea that tests are independent of each other.

We use a generic data fixture that lets the person writing the test specify the data-
base table, columns, and values for the columns in order to add data. Another ge-
neric data lookup fixture lets us enter a table name and SQL where clause to verify
the actual persisted data. We can also use the generic data fixture to delete data
using the table name and a key value. Figure 14-3 shows an example of a table
that uses a data fixture to build test data in the database. It populates the table

Lisa’s Story

Figure 14-3 Example of a table using a data fixture to build test data
in the database

308 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

“all fund” with the specified columns and values. It’s easy for those of us writing
test cases to populate the tables with all of the data we need.

Note that the schemas we use for these tests have most of their constraints re-
moved, so we only have to populate the tables and columns pertinent to the
functionality being tested. This makes maintenance a little easier, too. The down-
side is that the test is a bit less realistic, but tests using other tools verify the func-
tionality with a realistic environment.

The downside to creating test data this way is that whenever a change is made in
the database, such as a new column with a required value, all of the data fixture
tables in the tests that populate that table will have to be changed. These tests
can be burdensome to write and maintain, so we only use them when absolutely
needed. We try to design the tests to keep maintenance costs down. For exam-
ple, the data fixture in Figure 14-3 is in an “include” library and can be included
into the tests that need it. Let’s say we add a new column, “fund_category.” We
only need to add it to this “include” table, rather than in 20 different tests that
use it.

—Lisa

Canonical Data

Another alternative is having test schemas that can quickly be refreshed with
data from a canonical or seed database. The idea is that this seed data is a repre-
sentative sample of real production data. Because it’s a small amount of data, it
can be quickly rebuilt each time a suite of regression tests needs to be run.

This approach also increases the time it takes to run tests, but it’s just a few
minutes at the start of the regression suite rather than taking time out of each
individual test. The tests will still be slower than tests that don’t access the da-
tabase, but they’ll be faster than tests that have to laboriously populate every
column in every table.

Canonical data has many uses. Testers and programmers can have their own
test schema to refresh at will. They can conduct both manual and automated
tests without stepping on anyone else’s testing. If the data is carefully chosen,
the data will be more realistic than the limited amount of data each test can
build for itself.

Of course, as with practically everything, there’s a downside. Canonical data
can be a pain to keep up. When you need new test scenarios, you have to iden-
tify production data that will work, or make up the data you need and add it
to the seed schema. You have to scrub the data, mask real peoples’ identifying
characteristics, making it innocuous for security reasons. Every time you add

SUPPLYING DATA FOR TESTS 309

a table or column to the production database, you must update your test sche-
mas accordingly. You might have to roll date-sensitive data forward every year,
or do other large-scale maintenance. You have to carefully select which tables
should be refreshed and which tables don’t need refreshing, such as lookup ta-
bles. If you have to add data to increase test coverage, the refresh will take
longer to do, increasing the time of the build process that triggers it. As we’ve
been emphasizing, it’s important that your automated builds provide feed-
back in a timely manner, so longer and longer database refreshes lengthen
your feedback cycle. You also lose the test independence with canonical data,
so if one test fails, others may follow suit.

Lisa’s team members run their GUI test suites and some of their functional
regression tests against schemas refreshed each run with canonical data. On
rare occasions, tests fail unexpectedly because of an erroneous update to the
seed data. Deciding whether to “roll” data forward, so that, for example, 2008’s
rows become 2009’s rows, gets to be a headache. So far, the ROI on using ca-
nonical data has been acceptable for the team. Janet’s current team also uses
seed data for its “middle layer” testing on local builds. It works well for fast
feedback during the development cycle. However, the test environment and the
staging environments use a migrated copy of production data. The downside is
that the regression tests can only be run on local copies of the build. The risk is
low because they practice “build once, deploy to many.”

Production-Like Data

The ability to test a system that is as much like production as possible is essen-
tial to most software development teams. However, running a suite of auto-
mated regression tests against a copy of a production database would probably
run too slowly to be useful feedback. Besides, you couldn’t really depend on
any data remaining stable as you bring over new copies to stay up-to-date.
Generally, when you’re talking about functional or end-to-end testing, a clone
of the production database is most useful for manual exploratory testing.

Stress, performance, and load testing, which are automation–intensive, need
an environment that closely simulates production in order to provide results
that can translate to actual operations. Usability, security, and reliability are
other examples of testing that needs a production-like system, although they
may not involve much automation.

There is always a trade-off; your production database might be huge, so it is
expensive and slow, but it provides the most accurate test data available. If
your organization can afford hardware and software to store multiple copies
of production data for testing purposes, this is ideal. Small companies may

310 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

have resource constraints that might limit the amount of data that can be
stored in test and staging environments. In this case, you’ll need to decide
how much test data you can support and plan how to copy enough relevant
data to make the test representative of what’s used in “real life.” Or you may
consider making the investment in hardware, which is getting less expensive
every day, to support a real production style environment. Otherwise, your
test results might be misleading. As we mentioned with the canonical data,
you may need to scrub the data before using it.

Data Migration

Data migration needs to be tested against a real database. The database up-
grade scripts need to be run against real data and against the last known re-
lease of the database schema.

Understand Your Needs

If you understand the purpose of your tests, you can better evaluate your
needs. For example, if you don’t need to test stored procedures or SQL que-
ries directly for speed, consider tools such as in-memory databases, which
work just like real databases but greatly speed up your tests. When you need
to simulate the actual production environment, make a copy of the entire

Testing a Database Migration
Paul Rogers, an automation test architect, tells this story of testing an eye-
opening database migration [2008]:

Just yesterday, I ran a Rails migration against my test database. The
developers had written it, tested it, and checked it using their develop-
ment databases. My test database was probably 20,000 times larger. The
migration for them took seconds. For me, well, I stopped it after three
hours, at probably 10% complete. The programmers needed to redo
their migration strategy.

I doubt this would have shown up on an in-memory database, so for me,
a real database in this instance was definitely the right choice. In fact,
this is likely to feed into things we need to consider before releasing,
such as how long does a deployment take, or how long does the data-
base update take. We can then use this to estimate how much down
time we will need for the actual upgrade.

This is another example of how we must strike a balance between tests that
deliver quick feedback and tests that realistically reflect events that might
occur in production.

EVALUATING AUTOMATION TOOLS 311

production database, if necessary. Quick feedback is the goal, so balance test-
ing realistic scenarios with finding defects as efficiently as possible.

EVALUATING AUTOMATION TOOLS

The first step in choosing an automation tool is to make a list of everything
the tool needs to do for you. Let’s consider how you can decide on your test
tool requirements.

Identifying Requirements for Your Automation Tool

After deciding on the next automation challenge to tackle, think about your
tool needs. What tools do you already have? If you need additional ones, you
probably want something that integrates well with your existing testing and
development infrastructure. Do you need a tool to easily integrate into the
continuous build process? Will your existing hardware support the automa-
tion you need to do? Setting up a second build process to run functional tests
may require additional machinery.

Who’s going to use the test tool you’re hoping to implement? Will non-
programmers be writing test cases? Do your programmers want a tool they
feel comfortable with as well? Do you have distributed team members who
need to collaborate?

Who will be automating and maintaining the tests? The skills already on your
team are important. How much time do you have to get a tool installed and
learn how to use it? If your application is written in Java, a tool that uses Java
for scripting may be the most appropriate. Do team members have experi-
ence with particular tools? Is there a separate test team with expertise in a
certain tool? If you’re starting the transition to agile development and you al-
ready have a team of test automators, it may make sense to leverage their ex-
pertise and keep using the tools they know.

Your tool requirements are dependent on your development environment. If
you’re testing a web application, and the tool you choose doesn’t support SSL
or AJAX, you may have a problem. Not every test tool can test web services
applications. Embedded system testing can need different tools again. The
case study in Chapter 12, “Summary of Testing Quadrants,” shows one way
to use Ruby to test an embedded application.

Of course, the type of testing you’re automating is key. Security testing prob-
ably needs highly specialized tools. There are many existing open source and

312 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

vendor tools for performance, so the job of selecting one isn’t overwhelming.
As you master one challenge, you’ll be better prepared for the next. It took
Lisa’s team a couple of years to develop robust regression test suites at the
unit, integration, and functional levels. Performance testing was their next
area of pain. Lessons learned from the earlier automation efforts helped
them do a better job of identifying requirements for a test tool, such as ease
of reporting results, compatibility with existing frameworks, and scripting
language.

Write a checklist that captures all your tool requirements. Some of them
might conflict with or contradict each other—“The tool needs to be easy
enough so that customers can specify tests” or “The tests should be easy to
automate.” Write them down so you can find the right balance. Then start
doing your research.

One Tool at a Time

You’re going to need different tools to serve different purposes. Implement-
ing new tools and learning the best way to use them can get overwhelming
pretty quickly. Try one tool at a time, addressing your greatest area of pain.
Give it enough time for a fair trial and evaluate the results. If it’s working for
you, master that tool before you go on to the next area of pain and the next
tool. Multitasking might work for some situations, but new technology de-
mands full attention.

When you’ve settled on a tool to address a particular need, take a step back
and see what else you need. What’s the next automation challenge facing
your team? Will the tool you just selected for another purpose work for that
need, too, or do you need to start a new selection process?

If you’ve decided to look outside your own organization for tools, the first
step is to find time to try some out. Start with some basic research: Internet
searches, articles and other publications about tools, and mailing lists are
good places to get ideas. Compile a list of tools to consider. If your team uses
a wiki or online forum tool, post information about tools and start a discus-
sion about pros and cons.

Budget time for evaluating tools. Some teams have an “engineering sprint” or
“refactoring iteration” every few months where, rather than delivering stories
prioritized by the business, they get to work on reducing technical debt, up-
grading tool versions, and trying out new tools. If your team doesn’t have
these yet, make a case to your management to get them. Reducing your tech-

The bibliography
contains websites
that help with
tool searches
and evaluation.

EVALUATING AUTOMATION TOOLS 313

nical debt and establishing a good testing infrastructure will improve your
velocity in the future and free time for exploratory testing. If you never have
time to make code easier to maintain or upgrade tools, technical debt will
drag down your velocity until it comes to a halt.

When you have a list of tools that may meet your requirements, narrow the
possibilities down to one or two, learn how to use each one well enough to
try it, and do a spike: Try a simple but representative scenario that you can
throw away. Evaluate the results against the requirements. Use retrospectives
to consider pros and cons.

What resources do you need to implement and use the tool? What impact
will the tool have on the team’s productivity and velocity? What risks does it
pose? What will it allow you to do in the long term that you can’t do now?

Pick your top candidate and commit to trying it for some period of time—
long enough to get some competency with it. Make sure you try all your mis-
sion-critical functionality. For example, if your application uses a lot of Ajax,
make sure you can automate tests using the tool. In retrospectives, look at
what worked and what didn’t. Be open to the idea that it might not be right
and that you have to throw it out and start over. Don’t feel you have to keep
on with the tool because you have so much invested in it already.

We all know that there’s no “silver bullet” that can solve all your automation
problems. Lower your expectations and open your mind. Creative solutions
rely on art as much as science.

When conducting the performance test tool search, we turned to an agile testing
mailing list for suggestions. Many people offered their experiences, and some
even offered to help learning and implementing a tool. We searched for a tool
that used Java for scripting, had a minimal learning curve, and presented results in
a useful graphical format. We listed tools and their pros and cons on the team
wiki. We budgeted time for trial runs. Lisa’s coworker, Mike Busse, tried the top
two candidates and showed highlights to the rest of the team. A tool was chosen
by team consensus and has proven to be a good fit.

—Lisa

Choosing Tools

We’re lucky to have an already vast range and ever-growing set of tools to
choose from: home-grown, open source, vendor tools, or a combination of

Lisa’s Story

Chapter 11,
“Critiquing the
Product Using
Technology-
Facing Tests,
shows an example
of the results pro-
duced by the per-
formance test tool
chosen, JMeter.

314 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

any, are all viable alternatives. With so many choices, the trick is knowing
where to look and finding time to try tools out to see if they fit your require-
ments. Because we can’t predict the future, it may be hard to judge the ROI of
each potential solution, but an iterative approach to evaluating them helps
get to the right one.

Should You Grow Your Own?

Does your application present unique testing challenges, such as embedded
software or integration with outside systems? Do team members have the
skills, time, and inclination to write their own test framework or build one
on top of an existing open source tool? If so, home-grown test tools may be
the best fit.

A happy result (or perhaps a major success factor) of agile development is
that many programmers are “test infected.” Today’s development tools and
languages make automation frameworks easier to build. Ruby, Groovy, Rails,
and many languages and frameworks lend themselves to automation. Exist-
ing open source tools such as Fit and HtmlUnit can be leveraged, with cus-
tom frameworks built on top of them.

Home-grown tools have many advantages. They’re definitely programmer-
friendly. If your team is writing its own automation frameworks, they’ll be
precisely customized to the needs of your development and customer teams,
and integrated with your existing build process and other infrastructure—
and you can make them as easy to execute and interpret results as you need.

Home-grown doesn’t mean free, of course. A small team may not have the
bandwidth to write and support tools as well as develop production code. A
large organization with unique requirements may be able to put together a
team of automation specialists who can collaborate with testers, customers,
programmers, and others. If your needs are so unique that no existing tool
supports them, home-grown may be your only option.

Open Source Tools

Many teams who wrote their own tools have generously made them available
to the open source community. Because these tools were written by test-
infected programmers whose needs weren’t met by vendor tools, they are
usually lightweight and appropriate for agile development. Many of these
tools are developed test-first, and you can download the test suite along with
the source code, making customization easier and safer. These tools have a
broad appeal, with features useful to both programmers and testers. The

EVALUATING AUTOMATION TOOLS 315

price is right, although it’s important to remember that purchase price is
only a fraction of any tool’s cost.

Not all open source tools are well documented, and training can be an issue.
However, we see seminars and tutorials on using these tools at many confer-
ences and user group meetings. Some open source tools have excellent user
manuals and even have online tutorials and scheduled classes available.

If you’re considering an open source solution, look for an active developer
and user community. Is there a mailing list with lots of bandwidth? Are new
features released often? Is there a way to report bugs, and does anyone fix
them? Some of these tools have better support and faster response on bugs
than vendor tools. Why? The people writing them are also using them, and
they need those features to test their own products.

Vendor Tools

Commercial tools are perceived as a safe bet. It’s hard to criticize someone for
selecting a well-known tool that’s been around for years. They’re likely to
come with manuals, support, and training. For testers or other users who
lack a technical background, the initial ramp-up might be faster. Some are
quite robust and feature-rich. Your company may already own one and have
a team of specialists who know how to use it.

Although they are changing with the times, vendor tools are historically pro-
grammer-unfriendly. They tend to use proprietary scripting languages that
programmers don’t want to spend time learning. They also tend to be heavy-
weight. The test scripts may be brittle, easily broken by minor changes to the
application, and expensive to maintain. Most of these tools are recording
scripts for subsequent playback. Record/playback scripts are notoriously
costly from a maintenance perspective.

Elisabeth Hendrickson [2008] points out that specialized tools such as these
may create a need for test automation specialists. Silos such as these can work
against agile teams. We need tools that facilitate test-first, rather than test-last
development. Test tools shouldn’t stand in the way of change.

If you have people already expert in a vendor tool, and a use for a tool that
might be used only by a subset of the development team or a team separate
from development, a vendor tool could make lots of sense. Lisa’s first two XP
teams used a vendor tool with some degree of success.

See Chapter 9,
“Toolkit for
Business-Facing
Tests that Support
the Team,” for
more about open
source test auto-
mation tools.

See the bibliog-
raphy for a full
discussion by
Elisabeth
Hendrickson
on this subject.

316 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

As of this writing, better functional test tools and IDEs are emerging. These fa-
cilitate test maintenance tasks with features such as global search/replace. Twist
is an example of a tool implemented as a collection of plug-ins to the Eclipse
IDE, so it can take advantage of powerful editing and refactoring features.

Agile-Friendly Tools

Elisabeth Hendrickson [2008] lists some characteristics of effective agile test
automation tools. These tools should:

� Support starting the test automation effort immediately, using a test-
first approach

� Separate the essence of the test from the implementation details
� Support and encourage good programming practices for the code

portion of the test automation
� Support writing test automation code using real languages, with

real IDEs
� Foster collaboration

IMPLEMENTING AUTOMATION

While you’re evaluating tools, think about how quickly your top priority au-
tomation need must be addressed. Where will you get the support to help
implement it? What training does the team need, and how much time will be
available to devote to it? How quickly do you have to ramp up on this tool?

Keep all of these constraints in mind when you’re looking at tools. You might
have to settle for a less robust tool than you really want in order to get vital
automation going in the short term. Remember that nothing’s permanent.
You can build your automation effort step-by-step. Many teams experience
unsuccessful attempts before finding the right combination of tools, skills,
and infrastructure.

Selenium at Work
Joe Yakich, a software engineer with test automation experience, describes
how a team he worked with implemented a test automation effort with Sele-
nium, an open source test automation tool.

The software company I worked for—let's call it XYZ Corp—had a prob-
lem. The product, an enterprise-level web-based application, was a
powerful, mature offering. Development projects were managed using

Part III, “Using Agile
Testing Quadrants,”
and particularly
Chapter 9, “Toolkit
for Business-Facing
Tests that Support
the Team,” contain
examples of test
automation tools
that work well on
agile projects.

IMPLEMENTING AUTOMATION 317

Agile and Scrum, and a talented stable of engineers churned out new
features quickly. The company was growing steadily.

So, what was the problem? XYZ was facing a future where software test-
ing efforts might not be able to keep pace with the development effort.
Software quality issues might slow adoption of the product or—worse
yet—cause existing customers to look elsewhere.

Test automation seemed like an obvious way to mitigate these risks, and
XYZ was fully aware of it. In fact, they had attempted to create a test au-
tomation suite twice before, and failed.

The third time, XYZ chose to use Selenium RC, driven by the Ruby pro-
gramming language. Selenium RC—the RC is for “Remote Control”—is a
tool for test automation. Selenium RC consists of a server component
and client libraries. The Java server component acts as an HTTP proxy,
making the Selenium Core JavaScript appear to originate from the web-
server of the application under test (AUT). The server can start and stop
browser sessions (supported browsers include nearly all modern brows-
ers, including Internet Explorer, Firefox, and Safari) and interpret com-
mands to interact with elements such as buttons, links, and input fields.
The client libraries allow test scripts to be written in Java, .NET, Perl,
Python, and Ruby.

Our team chose Ruby because it's a purely object-oriented, dynamic, in-
terpreted language with a syntax that is elegant, expressive, and tersely
powerful. Most importantly, Ruby is an ideal tool for the creation of a Do-
main Specific Language (DSL). Ruby is malleable enough for the program-
mer to first choose the structure and syntax of the DSL and then craft an
implementation, as opposed to a more rigid language that might impose
constraints on that freedom. One of our goals was to create an automa-
tion framework—a DSL—hiding complex detail. We wanted to be able
to say things like

editor.save

in our tests instead of

s.click("//table[@class='edit']/tbody/tr[0]//img[@src='save.gif']")

Not only is the former more readable, it’s also far more maintainable. The
XPath expression in the latter can be put in a library method to be called
as needed. Using a DSL that employs the nouns and verbs of the applica-
tion allows an engineer writing a test to focus on the test, not the under-
lying complexity of interacting with on-screen controls.

XYZ created an automation team to build the framework and tests. Cre-
ating the framework itself was a time-consuming, technically challenging

318 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

Good object-oriented design isn’t the only key to building a suite of main-
tainable automated tests that pay off. You also need to run the tests often
enough to get the feedback your team needs.. Whatever tools we choose must
be integrated with our build process. Easy-to-interpret results should come
to us automatically.

task. Some of the framework classes themselves were complicated
enough to warrant unit tests of their own. After a sufficient amount of
test framework was constructed, we began work on actual application
tests, using the Ruby RSpec library. RSpec is itself a DSL for test specifica-
tions. One of its strengths is the use of simple declarative statements to
describe behavior and expectations. One might, for example, write a
test using the statement

“A user should be able to save data in an editor by clicking Save”

filling in the body of the test with calls to the Selenium-based test frame-
work we had created.

Nearly a year later, we had automated nearly two thousand test cases.
Although the majority of the application was covered by automation,
other portions of the application required manual testing—we had been
forced to make choices and prioritize our efforts. Every week the test
suite took longer to run than the preceding week; it now took nearly six
hours to complete, and we had begun to think about running tests in
parallel. We had not yet managed to expand our testing across all of the
browsers supported by the application. The enthusiasm that automation
generated had waned somewhat, and we found it necessary to carefully
manage expectations, both with upper management and with other en-
gineers. Despite these issues, Selenium was a clear win, for had we not
invested heavily in test automation, testing at XYZ would have required
hiring an army of test engineers (which would have been prohibitively
expensive even had we been able to find enough qualified applicants).

Not everything can be automated, because of budgetary or technical
reasons. In addition, exploratory testing is invaluable and should not be
neglected. It should be noted, however, that these drawbacks are
shared by every other test automation tool currently available, and most
of the other automation tools that can rival Selenium's automation prow-
ess are commercial products that cannot match its price: free.

Good development practices are key to any automation effort. Use an ob-
ject-oriented approach. As you build your library of test objects, adding new
tests becomes easier. A domain specific language helps make business-facing
tests understandable to customers, while lowering the costs of writing and
maintaining automated test scripts.

MANAGING AUTOMATED TESTS 319

The tools we choose have to work on our platforms, and must share and play
well with our other tools. We have to continually tweak them to help with
our current issues. Is the build breaking every day? Maybe we need to hook
our results up to an actual traffic light to build team awareness of its status.
Did a business-facing test fail? It should be plain exactly what failed, and
where. We don’t have extra time to spend isolating problems.

These concerns are an essential part of the picture, but still only part of the
picture. We need tools that help us devise test environments that mimic pro-
duction. We need ways to keep these test environments independent, unaf-
fected by changes programmers might be making.

Building test infrastructure can be a big investment, but it’s one our agile team
needs to make to get a jump on test automation. Hardware, software, and tools
need to be identified and implemented. Depending on your company’s re-
sources, this might be a long-term project. Brainstorm ways to cope in the short
term, while you plan how to put together the infrastructure you really need to
minimize risk, maximize velocity, and deliver the best possible product.

MANAGING AUTOMATED TESTS

Let’s say we need a way to find the test that verifies a particular scenario, to
understand what each test does, and to know what part of the application it
verifies. Perhaps we need to satisfy an audit requirement for traceability from
each requirement to its code and tests. Automated tests need to be main-
tained and controlled in the same way as production source code. When you
tag your production code for release, the tests that verified that functionality
need to be part of the tag.

Here’s an example where that comes in handy. We just found a problem in
the code under development. Is it a new problem, or has it been lurking in
the code for a while and somehow missed by the test? We can deploy the tag
that’s in production, try to reproduce the problem, and investigate why the
tests didn’t catch it. Lisa’s team recently had a situation where the regression
suite missed a bug because a database constraint was missing in the test
schema. That kind of problem is hard to pinpoint if you aren’t tying your test
code versions to your production code versions.

Organizing Tests

Many tools come with their own means of organization. For example, Fit-
Nesse comes with its own wiki, with a hierarchical organization, and built-in

320 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

version control. As of this writing, FitNesse is starting to provide support for
source code control tools such as Subversion. Scripts written in other test tools,
such as Watir and Canoo WebTest, can and should be maintained within the
same source code control system as production code, just as the unit tests are.

Organizing Tests with the Project under Test
We asked some agile testing experts how they manage tests. Dierk König,
founder and project manager of Canoo WebTest, explained how his teams
have managed their automated tests to satisfy the needs of both the devel-
opment and customer teams.

We always organize our tests alongside the project under test. That is,
test sources are stored together with the project sources in the exact
same repository, using the same mechanisms for revision control, tagging,
and sharing the test base.

WebTest comes with a standard layout of how to organize tests and test
data in directories. You can adapt this to any structure you fancy, but the
"convention over configuration" shows its strength here. In large
projects, every sub-project maintains its own test base in a “webtest”
subdirectory that follows the convention.

Whenever a client did not follow this approach, the experience was very
painful for all people involved. We have seen huge databases of test de-
scriptions that did not even feature a proper revision control (i.e., where
you could, for example, see diffs to old releases or who changed which
test for what reason).

Keep in mind that tests are made up from modules so that you can elimi-
nate duplication of test code; otherwise the maintenance will kill you.
And before changing any module, you need to know where it is used.

In short: Make sure the master of your tests and your test data is in a text
format that is versioned together with your code under test.

Nontechnical personnel (for example, management, QA) may require
more high-level information about test coverage, latest test results, or
even means of triggering a test run. Don't let these valid requirements
undermine the engineering approach to test automation. Instead, write
little tools, for example, web-based report applications, that address
these needs.

The ability of customers to access information about tests is as important as
the ability to keep test and production code coordinated. As Dierk pointed
out, you might not be able to do all this with the same tool.

MANAGING AUTOMATED TESTS 321

Test management helps your team answer questions such as the following:

� Which test cases have been automated?
� Which still need automating?
� Which tests are currently running as part of a regression suite?
� Which tests cover what functional areas?
� How is feature XYZ designed to work?
� Who wrote this test case? When? Who changed it last?
� How long has this test been part of the regression suite?

Because one of the primary reasons we write tests is to guide development,
we need to organize tests so that everyone on the team can find the appropri-
ate tests for each story and easily identify what functionality the tests cover.
Because we use tests as documentation, it’s critical that anyone on either the
development or customer team can find a particular test quickly when there’s
a question about how the system should behave. We might need multiple tools
to satisfy different test management goals.

It’s easy to lose control of test scripts. When a test fails, you need to pinpoint
the problem quickly. You may need to know what changes have been made
recently to the test script, which is easy with the history available in a source
code control system. Your customer team also needs a way to keep track of
project progress, to understand how much of the code is covered with tests,
and possibly to run tests themselves. Test management systems, like the tests
themselves, should promote communication and collaboration among team
members and between different teams.

Test Transparency
Declan Whelan, a software developer and agile coach, uses a test manage-
ment approach designed to keep tests visible to testers, developers, manag-
ers, and other teams.

We treat all test artifacts the same as source code from an organizational
and revision control perspective. We use Subversion, and anyone who
wants to run or edit the tests simply checks them out.

The latest Fit tests are available on a Confluence Wiki. We did this to sup-
port collaboration (team is distributed) and to leverage the strong capa-
bilities of Confluence. Having the tests visible on the wiki was also helpful
to others such as managers and other teams who did not want to check
it out from the repository.

322 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

Organizing Test Results

Everyone involved with delivering software needs easy access to tests and test
results. Another aspect of managing tests is keeping track of what tests are
from prior iterations and need to keep passing, versus tests that are driving
development in the current iteration and may not be passing yet. A continu-
ous integration and build process runs tests for quick feedback on progress
and to catch regression failures. Figure 14-4 shows an example of a test result
report that’s understandable at a glance. One test failed, and the cause of the
failure is clearly stated.

If you’re driving development with tests, and some of those tests aren’t pass-
ing yet, this shouldn’t fail a build. Some teams, such as Lisa’s, simply keep
new tests out of the integration and build process until they pass for the first
time. After that, they always need to pass. Other teams use rules in the build
process itself to ignore failures from tests written to cover the code currently
being developed.

As with any test automation tool, you can solve your test management prob-
lems with home-grown, open source, or commercial systems. The same cri-
teria we described in the section on evaluating test tools can be applied to
selecting a test management approach.

Test management is yet another area where agile values and principles, to-
gether with the whole-team approach, applies. Start simple. Experiment in
small steps until you find the right combination of source code control, re-
positories, and build management that keeps tests and production code in
synch. Evaluate your test management approach often, and make sure it ac-
commodates all of the different users of tests. Identify what’s working and
what’s missing, and plan tasks or even stories to try another tool or process to
fill any gaps. Remember to keep test management lightweight and maintain-
able so that everyone will use it.

Prior to this, the QA team maintained test cases on a drive that was not ac-
cessible to anyone outside of QA. This meant that developers could not
easily see what was being tested. Making the tests visible, transparent, and
supported by a version control system (Subversion) really helped to break
down barriers between developers and testers on the team.

Make sure your tests are managed with solid version control, but augment
that with a way for everyone to use the tests in ways that drive the project
forward and ensure the right value is delivered.

MANAGING AUTOMATED TESTS 323

Managing Tests For Feedback
Megan Sumrell, an agile trainer and coach, describes how her team coordi-
nates its build process and tests for optimum feedback.

We create a FitNesse test suite for each sprint. In that suite, we create a
subwiki for each user story that holds its tests. As needed, we create a
setup and teardown per test or suite. If for some reason we don't com-
plete a user story in the sprint, then we move the tests to the suite for
sprint in which we do complete the story.

We scripted the following rule into our build: If any of the suites from the
previous sprint fail, then the build breaks. However, if tests in the current
sprint are failing, then do not fail the build.

Figure 14-4 Test results from a home-grown test management tool

324 CHAPTER 14 � AN AGILE TEST AUTOMATION STRATEGY

GO GET STARTED

Don’t be afraid to get something—anything—in place, even if it’s somewhat
deficient. The most important factor in success is to just get started. Many, if
not most, successful teams have started with a poor process but managed to
turn an inadequate process into something truly essential to the team’s suc-
cess, one piece at a time. As with so many aspects of agile testing, improving
in tiny increments is the key to success.

If you don’t start somewhere, you’ll never get traction on automation. Get
the whole team together and start an experiment. Without the right level of
test automation, your team can’t do its best work. You need the right test au-
tomation to deliver business value frequently. A year or two from now, you’ll
wonder why you thought test automation was so hard.

SUMMARY

In this chapter, we considered how to apply agile values, principles, and prac-
tices to develop an automation strategy. We discussed the following subjects
related to automation:

� Use the agile testing quadrants to help identify where you need test
automation, and when you’ll need it.

� The test automation pyramid can help your team make the right in-
vestments in test automation that will pay off the most.

Each test suite has a lengthy setup process, so when our FitNesse tests
started taking longer than 10 minutes to run, our continuous integration
build became too slow. We used symbolic links to create a suite of tests
that serve as our smoke tests, running as part of our continuous integra-
tion build process. We run the complete set of FitNesse tests on a sepa-
rate machine. We set it up to check the build server every five minutes. If
a new build existed, then it would pull the build over and run the whole
set of FitNesse tests. When it was done, it would then check the build
server again every five minutes and after a new build existed, it would re-
peat the process.

Megan’s team took advantage of features built into their tools, such as sym-
bolic links to organize FitNesse test suites for different purposes—one for a
smoke test, others for complete regression testing. The team members get
immediate feedback from the smoke tests, and they’ll know within an hour
whether there’s a bug that the smoke tests missed.

SUMMARY 325

� Apply agile values, principles, and practices to help your team get
traction on test automation.

� Repetitive tasks, continuous integration and build processes, unit
tests, functional tests, load tests, and data creation are all good candi-
dates for automation.

� Quadrant 3 tests such as usability testing and exploratory testing may
benefit from some automation to set up test scenarios and analyze re-
sults, but human instincts, critical thinking, and observation can’t be
automated.

� A simple, whole-team approach, using iterative feedback, and taking
enough time can help you get started on a good solution.

� When developing an automation strategy, start with the greatest area
of pain, consider a multi-layered approach, and strive for continu-
ously revisiting and improving your strategy rather than achieving
perfection from the start.

� Consider risk and ROI when deciding what to automate.
� Take time to learn by doing; apply agile coding practices to tests.
� Decide whether you can simply build inputs in-memory, or whether

you need production-style data in a database.
� Supply test data that will allow tests to be independent, rerunnable,

and as fast as possible.
� Take on one tool need at a time, identify your requirements, and de-

cide what type of tool to choose or build that fits your needs.
� Use good development practices for test automation, and take time

for good test design.
� Automated tools need to fit into the team’s development infrastructure.
� Version-control automated tests along with the production code that

they verify.
� Good test management ensures that tests can provide effective docu-

mentation of the system and of development progress.
� Get started on test automation today.

This page intentionally left blank

Part V

AN ITERATION IN

THE LIFE OF A TESTER

Whenever we do tutorials, webinars, or Q&A sessions with participants who
are relatively new to agile development, we’re always asked questions such as
“What do testers do during the first part of an iteration before anything’s
ready to test?” or “Where does user acceptance testing fit into an agile release
cycle?” It’s easy to expound on theories of who should do what and when, in
an agile process, but we find giving concrete examples from our own experi-
ence is the best help we can give agile newbies. Through our talking to many
different agile teams, we’ve learned that there’s a lot of commonality in what
works well for agile development and testing.

In this part of the book, we’ll follow an agile tester’s life throughout an itera-
tion. Actually, we’ll explore more than just an iteration. We’ll start with what
testers do during release or theme planning, when the team looks at the work
it will do for several upcoming iterations. We’ll give examples of what testers
can do to help the team members hit the ground running when they start the
iteration. We’ll show how coding and testing are part of one integrated pro-
cess of delivering software, and we’ll describe how testers and programmers
work closely and incrementally. We’ll explain different ways that testers can
help their teams stay on track and gauge progress, including useful ap-
proaches to metrics and handling defects. We’ll look at testing-related activi-
ties involved in wrapping up an iteration and finding ways to improve for the
next one. Finally, we’ll examine a tester’s role in a successful release, includ-
ing the end game, UAT, packaging, documentation, and training.

328 PART V � AN ITERATION IN THE LIFE OF A TESTER

The activities described in this slice-of-life look at agile testing can be per-
formed by anyone on the team, not only testing specialists. On some teams,
all team members can, and do, perform any task, be it development, testing,
database, infrastructure, or other tasks. For simplicity, in this section we’ll as-
sume we’re following someone whose primary role is testing as they help to
deliver high-quality software.

329

Chapter 15

TESTER ACTIVITIES IN
RELEASE OR THEME PLANNING

Agile development teams complete stories and deliver production-ready software
in every iteration but plan the big picture or a larger chunk of functionality in
advance. A theme, epic, or project may encompass several iterations. In this
chapter, we look at what testers do when their team takes time to plan their
release. We also consider ways to track whether our development is proceeding as
anticipated, or if course corrections are needed.

LIghtweight Test Plan

Test Matrix

Spreadsheet

Whiteboard

Automated Test List

Tracking Test Tasks

Communicating Test Results

Release Metrics

Test Plan
Alternatives

Prioritizing

Where to Start?

Why Test Plan?

Types of Testing

Infrastructure

Test Environments

Test Data

Test Results

Why Do We Prioritize?

Testing Considerations

Purpose of Release Planning

Deadlines and Timelines

Focus on Value

System-Wide Impact

Third-Party Involvement

Sizing Stories

Tester’s Role

An Example

What’s In-Scope?

Test Planning

Preparing for
Visibility

Release/Theme
Planning

Sizing

330 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

THE PURPOSE OF RELEASE PLANNING

One reason software teams try agile development is because they know long-
range plans don’t work. Most business environments are volatile, and priori-
ties change every week, or even every day. Agile development is supposed to
avoid “big design up front.” Most of us have experienced making plans that
turned out to be a waste of effort. But we have to have some understanding of
what our customer is looking for and how we might deliver it in order to get
off to a good start. Fortunately, an agile approach can make planning a useful
way to give us a head start on knowing how we will deliver the product.

Agile Planning Applied
Janet’s sister, Carol Vaage, teaches first grade when she isn’t directing confer-
ences. She relates her first experience with using agile practices to organize a
conference:

My table is loaded with binders and to-do lists, and a feeling of being
overwhelmed freezes me into inaction. I am Conference Director and the
task right now seems onerous. When my sister offers to help me, I agree,
because I am desperate to get this planning under control. I welcome
Janet to my clutter, show her my pages of hand-written lists of things that
need to get done, explain the huge tasks waiting for my attention, and
share how my committee works.

Janet showed me in simple language how to separate each task onto a
sticky note and use color coordination for different responsibilities and
different individuals. She explained about the columns of “To Do,” “In
Progress,” “To Review,” and “Done.” I had never heard of the word itera-
tion before but fully understood about a timeline. She recommended
two-week blocks of time, but I chose one-week iterations. We set up a
wall for my planning board, and Janet left me to pull it together and to
add the tasks needed.

In the six days since Janet has been here, ten tasks have been moved
from the To-Do column to In-Progress. Three tasks are Done, and specific
time-related tasks have been blocked by the correct time period. The
most positive thing is that as I add more tasks in the To-Do column, I am
not feeling overwhelmed. I understand that all I need to do is initiate the
steps to start it, and then the job becomes easier. The feeling of chaos is
gone; I see progress and understand that there is still much work to be
done. The timeline is clear, the tasks are discrete and concrete. And the
most difficult task of all, finding a way to coordinate the video confer-
ence for our keynote speaker has been tackled. This system works!

Agile planning and tracking practices are useful for more than software devel-
opment. A little time carefully invested, and simple tools used in organizing
and planning the testing activities and resources for a release, will help the
team deliver high-quality software.

THE PURPOSE OF RELEASE PLANNING 331

XP teams may take a day every few months for release planning. Other agile
teams do advance planning when getting ready to start on a theme, epic, or
major feature, which we think of as a related group of stories. They work to
understand the theme or release at a high level. What is the customer’s vision
of what we should be delivering? What’s the purpose of the release? What’s
the big picture? What value will it deliver to the business, to the customers?
What other teams or projects are involved and require coordination? When
will UAT take place? When will code be released to staging, to production?
What metrics do we need to know if we’re on track? These general questions
are addressed in release planning.

Some teams don’t spend much time doing release planning activities. Priori-
ties change quickly, even within a particular theme of features. Nobody
wants to do too much work up front that ends up being wasted. Some teams
just look at the first couple of stories to make sure they can get a running
start. At the very least, teams want to know enough to get their system archi-
tecture pointed in the right direction and get started on the first few stories.

These planning meetings aren’t intended to plan every iteration of the release
in detail. And we know we can’t predict exactly how many stories we can
complete each iteration. However, we do have an idea of our average velocity,
so we can get a general idea of the possible scope of the release. The team
talks about the features and stories, trying to get a 20,000-foot view of what
can go into the release and how many iterations it might take to complete.
Both of us like Mike Cohn’s approach to release planning in his book Agile
Estimating and Planning [2005]. Stories that the business wants to include
are sized relative to each other, and then features are prioritized according to
the value they deliver. The team may identify “thin slices” through the fea-
tures to determine what stories absolutely have to be done, what’s in scope,
what “nice-to-haves” could be put off until later. They look at dependencies
between stories, relative risk, and other factors that determine the order in
which features should be coded. The order in which stories are coded is as
important, or sometimes more important, than the size of the stories. Teams
want to deliver value the first iteration of the release.

Release planning is a chance for the developers and customers to consider the
impact of the planned features on the larger system, clarify assumptions, and
look at dependencies that might affect what stories are done first. They may
think about testing at a high level and whether new resources such as test en-
vironments and software will be needed.

Let’s follow our agile tester through release planning activities and see how
she contributes value through her unique perspective and focus.

332 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

SIZING

Agile teams estimate the relative size of each story. Some teams size as they go,
delaying the estimation until the iteration where they’ll actually complete the
story. Others have meetings to estimate stories even in advance of release
planning. Some developer and customer teams sit together to write and esti-
mate the size of stories all at one time. The goal of sizing is for the program-
mers to give the business an idea of the cost of each story and to help them
prioritize and plan the first few iterations. High-functioning teams who’ve
worked together for years may take a less formal approach. For new agile
teams, learning to size stories takes a lot of practice and experience. It’s not
important to get each story sized correctly but to be close enough to give cus-
tomers some idea of how big the stories are so they can prioritize with better
information. Over time, variations on individual story sizing will average out,
and we find that a theme or related group of stories takes about the amount of
time expected.

How to Size Stories

As far as how to calculate story size, different teams use different techniques,
but again, we like Mike Cohn’s approach to determining story size. We size in
story points, ideal days, or simply “small, medium, large.” The relative size of
each story to others is the important factor. For example, adding an input
field to an existing user interface is obviously much smaller than developing
a brand new screen from scratch.

If the business knows the average velocity (the number of story points the
team completes each iteration) and has the initial size estimates of each story
it wants to get done, it has an idea of how long it might take to implement a
given theme. As with any other development methodology, there are no
guarantees, because estimates are just that. Still, the business can plan well
enough to conduct its usual activities.

Our teams use planning poker (explained in Mike Cohn’s book Agile Estimat-
ing and Planning) to estimate story size. In planning poker, each team mem-
ber has a deck of cards. Each card has a number of points on it. The process
begins with the customer or product owner reading a story and explaining its
purpose and the value it will deliver. He might list a few conditions of satisfac-
tion or high-level test cases. After a brief discussion, team members each hold
up a point card that represents how “big” they think the story is from their
perspective. They discuss any big differences in point value and estimate again
until they reach consensus. Figure 15-1 shows team members talking about

SIZING 333

the point values they each just displayed. This needs to be a quick process—
long discussions about details don’t result in more accurate size estimates.

Some teams figure the relative sizes of stories by how many people are needed
to complete a given story in a set amount of time. Others estimate how many
ideal days one person would need to finish it. Use a measurement that makes
sense to all team members and one that provides consistency among estimates.

The Tester’s Role in Sizing Stories

One of our favorite sayings is, “No story is done until it’s tested.” However,
we’ve run across teams where testing wasn’t included in estimates of story size.
In some cases, testing a piece of functionality might take longer than coding it.

In our experience, testers usually have a different viewpoint than other team
members. They often have a broad understanding of the domain and can
quickly identify “ripple effects” that one story might have on the rest of the
system. They also tend to think of activities not directly related to develop-
ment that might need to be done, such as training users on a new or changed
interface.

Figure 15-1 Planning poker

334 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

What does a tester do during the story sizing process? I think quickly about the
story from several viewpoints. What business problem is the story solving, or what
business value does it deliver? If this isn’t clear, I ask the product owner questions.
How will the end user actually use the feature? If it’s still not clear, I ask the prod-
uct owner for a quick example. I might ask, “What’s the worst thing that could go
wrong with it?” This negative approach helps gauge the story’s risk. What testing
considerations might affect the story’s size? If test data will be hard to obtain or
the story involves a third party, testing might take longer than coding. I try to
quickly flush out any hidden assumptions. Are there dependencies or special se-
curity risks? Will this part of the application need to handle a big load?

Many stories aren’t big enough to warrant that much thought. Usually, we don’t
need much detail to get an idea of relative size. However, your team can really get
burned if a story is underestimated by a factor of five or ten. We once gave a rela-
tively small estimate to a story that ended up being at least ten times the size.
These are the disasters we want to avoid by asking good questions.

—Lisa

Testers need to be part of the sizing process. Some teams think that only pro-
grammers should participate, but when testers are active participants, they
can help to get a much more accurate story sizing, which is in the best inter-
ests of the whole team.

An Example of Sizing Stories

Let’s imagine we have the story in Figure 15-2 to size up.

Lisa’s Story

Figure 15-2 Story to delete items

Story PA-3

As a shopper on our site, I want to delete items

out of my shopping cart so I don’t purchase

extra items that I decide I don't want.

SIZING 335

After the product owner reads the story, the following discussion ensues:

Product Owner: “We just want some easy way for users to delete items,
but we don’t have a specific implementation in mind.”

Tester: “Should they be able to delete several items at once?”

Product Owner: “Oh, yes, just make it as easy as possible.”

Tester: “What if they accidentally delete an item they wanted to buy?”

Product Owner: “Is there some way the deleted items can be saved for
later retrieval?”

Programmer: “Sure, but you should write a new story for that. For now,
we should start with the basic delete functionality.”

Tester: “Last release we implemented a wish list feature. Do you want
users to be able to move items from their shopping basket to their wish
list? That would be a new story also.”

Product Owner: “Yes, those are two more stories we want to do, for
sure. I’ll write those down, we can size them also. But we could definitely
put them off until the next release, if we have to.”

Tester: “What’s the worst thing that could happen with this feature?”

Product Owner: “If they can’t figure out how to delete, they might just
abandon their whole shopping basket. It has to be really easy and obvious.”

The ScrumMaster calls for an estimate. The team understands they’re sizing
only the basic story for deleting items, not for doing something else with the
deleted items. They quickly agree on a point value.

Let’s look at another story. (See Figure 15-3.)

Figure 15-3 Story on shipping speed

Story PA-4

As a customer, I want to know how much my

order will cost to ship based on the shipping

speed I choose so that I can choose a different

shipping speed if I want to.

336 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

Tester: “What are the shipping speeds the user can choose?”

Product Owner: “Standard 5-day, 2-day, and next-day.”

Programmer: “We should probably start by only offering one speed,
and calculating that cost. Then we can easily implement the other two
speeds.”

Product Owner: “It’s fine to break it up like that.”

Tester: “Will we use BigExpressShipping’s API to calculate cost based on
weight and destination?”

Programmer: “That would be the easiest.”

The team holds up their point cards. The tester and one of the programmers
hold up an 8; the other developers hold up a 5.

ScrumMaster: “Why did you two choose 8?”

Tester: “We’ve never used BigExpressShipping’s cost API before, and I’m
not sure how that will impact our testing. We have to find out how to ac-
cess their system for testing.”

Other Programmer with 8: “I agree, I think the testing effort is more
intense than the coding effort for this story.”

The team agrees to size the story as eight points.

This sizing process may occur before the planning meeting, and if the sto-
ries were sized or estimated a long time ago, the team might want to make
sure they feel comfortable with the story sizes. Teams may have changed or
may be more experienced. Either of those factors can make a team change
the estimates.

There are many times when a story will have a large testing component, and
the coding effort is small. At other times, the reverse will be true. It’s impor-
tant to consider all perspectives.

SIZING 337

Our team grew to dread story sizing meetings, because we got into overly long
discussions about details, and the meetings always lasted long past the scheduled
time. Since then, our ScrumMaster has found ways to keep us on track. She uses
an egg timer to time discussions, and stops them each time the sand runs out to
see if we think we really need more time to ask questions. Our product owner has
also learned what information we need for estimating and usually has what we
need. We also learned to only work on stories that were likely to come up in the
next few iterations.

With all of our meetings, little traditions have grown to make the meetings more
fun. Someone always brings treats to iteration planning meetings. In stand-up
meetings, we pass around a combination penlight and laser pointer, so each of us
holds it as we report on what we’re working on. We always end story sizing meet-
ings with a competition to see who can throw his or her deck of planning poker
cards into the small plastic tub where they live. Figure 15-4 shows this goofy but
fun meeting-ending activity. Always remember the agile value of enjoyment and
have some fun with your meetings.

—Lisa

Lisa’s Story

Figure 15-4 A meeting-ending tradition

338 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

PRIORITIZING

The purpose of the release planning meeting is also to get an idea of what
stories the team will try to finish by the release date. The customers prioritize
the stories, but there may be dependencies, so it makes sense to do certain
stories first, even if they aren’t the highest priority. It is important that the
team understands the possibility that not all of the stories will get completed
by the release date. One of the basic premises of agile is to deliver working
software, so it is important to have the highest-value stories completed first
so that the software we do deliver meets the customer’s needs.

Why We Prioritize Stories

Everyone’s goal is to deliver real value in each iteration. Testers can help the
team pick out the core functionality that has to work. In Chapter 8, we ex-
plained the “thin slice” or “steel thread” concept, identifying one path through
the functionality to code and test first, and adding more features after the first
critical path works. This concept applies at the release level, too. The order of
the stories is critical. Lisa’s team will sometimes break up a story and pull out
a core part of a feature to do in the first iteration.

Some teams that don’t do full-blown release planning do take time to look at
the stories and decide which two or three should be first. That way, they de-
liver business value in the very first iteration of the release.

Let’s look at an example.

If our theme is providing the ability for an online shopper to choose
shipping options and then calculate the shipping cost based on weight,
shipping speed, and destination, it may be a good idea to complete sim-
ple stories or even subsets of stories so that the checkout process can pro-
ceed end-to-end. Start by only allowing standard 5-day shipping, items
less than 10 pounds, and destinations in the continental United States.
When the user can get the shipping cost for that scenario and check out,
the team can decide the next priorities. They may include heavyweight
items, faster shipping speeds, shipping to Hawaii and Alaska, and ship-
ping to Canada and Mexico.

By providing this thin slice first, the testers have something to start testing
immediately. The programmers have also tested their design and code inte-
gration steps and so have a solid idea of how things will work when the whole
feature is complete.

PRIORITIZING 339

Testing Considerations While Prioritizing

It is important that the team understands the big picture or theme. In our ex-
ample, team members know the stories for shipping outside the continental
United States will come later. This knowledge may affect how they imple-
ment the first story. This doesn’t mean they have to plan for every eventual-
ity, but if they know they need more shipping options, they may implement a
drop-down list rather than a basic text field. No need to make more work or
rework than necessary.

During release planning, we also consider the relative risk of the stories. If
certain stories have many unknowns, it might be best to include them in an
early iteration, so there’s time to recover if a story “blows up” and takes much
more time than estimated. The same may apply to a story which, if not com-
pleted or implemented incorrectly, would have a costly negative impact.
Scheduling it early will leave more time for testing.

If new technology or software is needed, it might be good to learn it by devel-
oping a straightforward story and plan more difficult ones for later itera-
tions. This new technology may or may not affect your test automation. You
may want more time to check out the impact. If the features are all brand
new and the team needs more time to understand how they should work,
plan to do less than your average velocity for the first iteration. That way,
you’ll have more time to write tests that will correctly guide development.
Identify risks and decide what approach makes the most sense from a testing
perspective as well as a development perspective. This is one of the reasons it
is important to include the whole team in the planning sessions.

Looking at the stories from a testing viewpoint is essential. This is where
testers add the most value. The team needs to develop in small, testable
chunks in order to help decide what stories are tentatively planned for which
iteration. The key here is testable. Many new agile teams think small chunks
means doing all of the database work first, or all of the configuration stuff.
Testable doesn’t necessarily mean it needs a GUI either. For example, the al-
gorithm that calculates shipping cost is an independent piece of code that
can be tested independently of any user interface but requires extensive test-
ing. That might be a good story for the first iteration. It can be tested as free-
standing code and then later tested in combination with the UI and other
parts of the system.

The testers may lobby for getting an end-to-end tracer bullet through the
code quickly, so they can build an automation framework, and then flesh it

340 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

out as the story development proceeds. If there are stories that present a big
testing challenge, it might be good to do those early on. For example, if the
release includes implementing a new third-party tool to create documents
from templates and dynamic data, there are many permutations to test. If the
team is unfamiliar with the tool, the testers can ask the team to consider do-
ing those stories in the first iteration of the release.

WHAT’S IN SCOPE?
Agile teams continually manage scope in order to meet business deadlines
while preserving quality. High-value stories are the first priority. Stories that
are “nice-to-haves” might be elbowed out of the release.

Our team’s customers list their stories in priority order and then draw a line be-
tween the stories that must be done before the release can occur, and the ones
that could safely be put off. They call the less important stories “below the line,”
and those stories may never get done.

For example, when we undertook the theme to allow retirement plan participants
to borrow money from their retirement accounts, there was a “below the line”
story to send emails to any participants whose loans are changing status to “pend-
ing default” or “default.” When the loan is in “default” status, the borrower must
pay taxes and penalties on the balance. The email would be extremely helpful to
the borrowers, but it wasn’t as important to our business as the software to re-
quest, approve and distribute loans, or process loan payments.

The email story didn’t make it into the release. It wasn’t done until more than two
years later, after enough complaints from people who didn’t know their loans
were going into default until it was too late.

—Lisa

Janet worked with a team whose customers were under the misplaced as-
sumption that all of the features would get into their release and that when
they were prioritizing, they were just picking which stories got done first.
When the rest of the team realized the misunderstanding, they also imple-
mented the idea of stories above and below the line. It helped to track progress
as well as make the stories that were dropped below the line very visible.

Deadlines and Timelines

Many domains revolve around fixed dates on the calendar. Retail businesses
make most of their profit during the holiday season. An Internet retail site is
smart to have all new features implemented by October 1. Implementing a

Lisa’s Story

WHAT’S IN SCOPE? 341

new feature close to the peak buying period is risky. Lisa’s company’s cus-
tomers must complete government-required tasks during certain periods of
the year. When it’s too late for a feature to get released this year, it often gets
put off for the next year, because more urgent priorities must be addressed.
Regulatory changes have specific timelines, and organizations have no choice
about the timeline.

While working on this book, I was planning a release with my team at WestJet. We
had several possible stories and worked with the customers to decide what the
release would look like. We had one regulatory change that was light work for
the programmers, but heavy for the testers. It needed to be in production by a
certain date, so the other stories we were considering for the release took that
into consideration.

We decided to create a small maintenance release with just that one major fea-
ture, along with a few bugs from the backlog so the release of the regulatory
change would not be jeopardized. While the testers completed their testing, the
rest of the team started some of elaboration stories for the next release.

An alternative plan could have been that the programmers chip in and help test
and fit in more features. However, the whole team decided that this plan would
work the best with the least amount of risk.

—Janet

Focus on Value

It’s rather easy for a team to start discussing a complex story and lose sight of
what value the features actually deliver. Release planning is the time to start
asking for examples and use cases of how the features will be used, and what
value they’ll provide. Drawing flowcharts or sample calculations on the white-
board can help pinpoint the core functionality.

Our product owner wrote a story to provide a warning if an employer overrides
the date a participant becomes eligible to contribute to a retirement account
after the participant has already made contributions.

The warning needed to be incorporated into the legacy UI code, which didn’t
easily accommodate it. The team discussed how it might be implemented, but
every option was fairly costly. Not only would coding be tricky, but a lot of time
was needed to test it adequately and update existing automated tests. This fea-
ture wouldn’t provide much value to the business, just a bit of help to the end
users. The release was already pretty close to the limit on features.

One of the programmers suggested providing a report of participants who met
the criteria so the plan administrators could simply call the employers who may

Janet’s Story

Lisa’s Story

342 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

need to make corrections. The report story was much smaller than the warning
story, could easily fit into the release, and was acceptable to the customer.

—Lisa

There is no guarantee that these initial “guesstimates” at what will be in a
given release will hold up over time. That is why customers needs to under-
stand their priorities, take checkpoints at the end of every iteration, and re-
evaluate the priorities of remaining stories.

System-Wide Impact

One of our jobs as testers is to keep the big picture in mind. The agile tester
thinks about how each story might affect the system as a whole, or other sys-
tems that ours has to work with. For example, if the toy warehouse makes a
change to its inventory software, and the new code has a bug that overstates
the number of items in stock, the website might sell more of the hot new doll
than there are available, disappointing thousands of children and their par-
ents at Christmas. When risk is high, listing areas of the system that might be
affected for a theme or group of stories might be a worthwhile exercise even
during release planning.

Contact points between our system and that of partners or vendors always
merit consideration. Even a minor change to a csv or xml file format could
have a huge impact if we don’t communicate it correctly to partners who ftp
files to us. Stories that mean changes for third parties need to be done early
enough in the release cycle to let the third parties make necessary changes.

Figure 15-5 shows a simplified diagram of a new system that touches many
pieces of the existing system. Different tools might be needed to test the
integrations.

Testers who have worked with some of the other systems or understand what
testing needs to happen on those systems can offer valuable insight into the
impact of a new story. Often, stories will need to be delayed until a future re-
lease if the impact has not been explored. This is a good time to recall previ-
ous releases that didn’t end so well.

Third-Party Involvement

Working with vendor tools, partners, or other contractor teams on a big
project complicates release planning. If anyone outside your team is respon-
sible for some part of the project, that’s one piece that’s out of your control. If

We talked about
the “ripple effects”
in Chapter 8, “Busi-
ness Facing Tests
that Support the
Team.”

WHAT’S IN SCOPE? 343

you need to coordinate with others, including possible new users of the sys-
tem, it’s best to start early.

Lisa’s team has written several interfaces to allow users to upload data to their
systems. In each case, they had to get the proposed file format out to the us-
ers early to make sure it would work for them. Other projects involved send-
ing data to partners or vendors. These required extra planning to arrange
testing with their test systems and getting their feedback on whether data was
valid and correctly formatted.

If you’re using a third-party product as part of your solution, you might as-
sume it has been tested, but that might be a poor assumption. You will need
to budget extra time to test your application in conjunction with the vendor
software. If there’s a problem in the other company’s software, it might take a
long time to resolve. Lisa’s team uses third-party software for critical tasks
such as document creation. If a theme includes modifying or creating new
documents, they plan extra time to upgrade the software if needed, and extra

Standard
Reports

Fuel
System

Profiles
(NS Tool 1)

Overhead
(NS Tool 2)

Conversion
(NS Tool 3)

Legacy
System

New
System

Gas
System

ABC
System

SAP

OMSWeb
Reports

Figure 15-5 System impacts

344 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

time for testing in case fixes are needed. If possible, bring the third-party
software into the project early, and start end-to-end testing. The more you
can work with the interface, the better off you’ll be.

Other third-party software that we often forget about until it’s too late is our
own testing environments. Sometimes a team will incorporate new code that
takes advantages of new features in their chosen language. For example, if
team members are using AJAX or JavaScript, they may need to upgrade the
software development kit they’re using. This means that a team will have to
upgrade its production runtime environment as well, so take that into con-
sideration and test early.

Clients or partners might have concerns about a release that isn’t within your
own team’s scope. Lisa’s team was once prevented at the very last minute
from releasing a new feature because a partner didn’t have time to okay the
change with their legal advisors. The programmers had to quickly devise a
way to turn the functionality off without requiring extensive additional test-
ing. Interestingly, partners who aren’t using agile development sometimes
have trouble meeting their own deadlines. They might be unprepared when
your team meets the deadline.

I worked on a project to implement a feature that required a new piece of hard-
ware for scanning a new 2D bar code. The team decided to implement in stages
because it was not known when the scanners would be available for full testing,
but the customer wanted the code ready for when the scanners arrived.

The initial phase was programmer-intensive because there was a lot of research to
be done. After they determined how they would implement the feature, the story
was created to add it into the code. However, we knew we couldn’t thoroughly
test it until the scanners were available. The code was ready to test, but instead of
backing it all out, we only needed to worry about testing that the feature could
be turned off for the release. The next release would require more testing, but
only if the scanners were available. The testing of the story was kept in the prod-
uct backlog so we would not forget to do it.

—Janet

If you’ll be working with other teams developing different components of the
same system, or related systems, budget time to coordinate with them. It’s a
good idea to designate a member from each team to coordinate together.

Release planning is the time to identify extra roles you need on your team, ad-
ditional resources, and time needed for out-of-the-ordinary circumstances.

Janet’s Story

TEST PLANNING 345

TEST PLANNING

We can’t expect to plan the iterations in a release at a detailed level. We can
get an idea of the theme’s steel threads, prioritize stories, and make a guess at
what stories will be in which iteration. Detailed test planning needs to wait
for iteration planning. Still, we need to think about testing at a high level,
and try to budget enough time for it. We might even take time separately
from the release planning meeting to strategize our testing for the release. In
Chapter 8, Business-Facing Tests that Support the Team, we mentioned one
of the perils of agile testing: “forgetting the big picture.” Test Planning will
help you with that problem.

Where to Start

During release planning, it’s helpful to know the business conditions of satis-
faction for each story or high-level user acceptance test case. When stories
need clarification, agile testers ask for examples. At this stage, examples will
be high-level, covering just the basics, but enough to be able to size and pri-
oritize the story. Drawing flowcharts or writing calculations on the white-
board and discussing them helps us identify project-specific testing issues.

At a minimum, the team needs to understand the top-priority stories that are
scheduled to be performed first. Lightweight planning might involve only
looking at those core stories with the understanding that more time will be
needed for defining additional tests.

As we get a sense of which stories will probably be included in the release, we
can start thinking about the scope of the testing. What assumptions have
been made that might affect testing? Use of third-party software, such as the
example of using a shipping company’s shipping calculation API, affects test
planning. Are there any unusual risks in this release that will impact testing?
If we have stories to implement batch jobs, and we’ve never had any batch
processing in the system before, there are probably new frameworks that im-
pact testing. We need to budget time to learn them.

Why Write a Test Plan?

In release planning, we talk about the purpose of the release, what’s in scope,
and what assumptions we’re making. We do some quick risk analysis and
plan our test approach to address those risks. We consider automation and
what we need for test environments and test data. We certainly want to iden-
tify milestones and deliverables. Hmmm, this is starting to sound like . . . a
test plan!

Chapter 8,
"Business-Facing
Tests that Support
the Team," ex-
plains how to
identify steel
threads or thin
slices in a story
or theme.

346 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

If, like ourselves, you spent time working in a traditional waterfall environ-
ment, you might have wasted time writing bulky test plans that nobody read
and nobody bothered to maintain. In agile development, we want our test
plans to serve our needs. Your customer might require a test plan for each re-
lease for compliance reasons. Even if it’s not a required deliverable, it can be
useful. Keep it concise and lightweight. It only has to serve your purposes
during this release. Address the testing issues that are specific to this release
or project. Include your risk analysis and identify assumptions. Outline the
critical success factors that your customer has identified. Think about what
people need to know related to testing, and remove anything extraneous.

Even if you don’t create a formal test plan, be sure you have made note of all
these different testing factors involved in the release. You’ll want to keep them
in mind during every iteration planning session. The biggest benefit in test
planning is the planning itself. It allows you to consider and address issues
such as test data requirements, infrastructure, or even what test results are re-
quired. Test planning is a risk mitigation strategy. Let’s consider some of these
issues.

Types of Testing

In Part III, we covered the four quadrants of testing and talked about all of
the different types of testing you can do during your project. Release plan-
ning is a good time to consider these different needs. Do you need to plan to
bring in a load test tool, or will there be the need to build some kind of spe-
cialty test harness?

It could be that your next release is just an extension of your last, and you
will just carry on creating your examples, automating your story tests, and
doing the rest of the testing as you’ve been doing. You are one of the lucky
ones. For those of you who are starting a brand new project with no previous
processes in place, now is the time to consider what testing you will need. We
don’t mean you have to decide how to test each story, but look at the big pic-
ture and think about the quadrants. Will you need to plan for a special UAT,
or will the iteration demos be enough? It is important to raise these issues
early so the team can plan for them.

Infrastructure

While you are doing your test planning, you need to consider your infra-
structure. Infrastructure can mean your continuous integration setup, test
environments, and test database. It can mean how you promote your builds

See Chapter 5,
“Transitioning
Typical Processes,”
for more about
test plans and
test strategies.

TEST PLANNING 347

to your test environments. It might mean your test lab, if you have one, or
having a separate server to run all your automation tests. These are generally
pieces of infrastructure that need some lead time to get in place. This is the
time to make a plan.

Some types of testing might require extra effort. My team had a tool to do perfor-
mance testing and some scripts, but we lacked a production-style environment
where we could control all of the variables that might affect performance. For ex-
ample, the test database was shared by testers, programmers, and two build pro-
cesses. Slower performance might simply mean someone was running database-
intensive tests. We used our staging environment to get a baseline, but it was miss-
ing some of the components of production. We set a six-month goal to acquire
hardware and software for a proper test environment and get it set up. We wrote
a task card or two each iteration to establish the environment step by step.

—Lisa

Whatever your needs are, make sure you understand them and can plan for
what you need. If you don’t have the right infrastructure, then you will waste
time trying to get it together and cause a bottleneck in mid-iteration.

Test Environments

As we look at the types of features in the next release, we might see the need
for a whole new test environment. Think about specialized test environments
you may need as well. Will you need more tools? Do you need to expand your
test lab so that you can test with different browsers and operating systems?
This is the time to think about all testing considerations.

If you’re planning your first release, test environments are a key consider-
ation. You might need a story or iteration just to set up the infrastructure you
need. We’ve started more than one project where the only place we could test
was the development environment. We found that doesn’t work very well,
because the environment is never stable enough for effective testing.

Just as programmers have their own sandboxes to work and test in, it works
well if each tester has that same availability and control. We recognize that
not all applications lend themselves to this, but at the very least, you need to
know what build you’re testing. You also need test data that others will not
walk over with their tests. If you don’t have a testing sandbox that’s under
your own control, take time to plan what you need to establish for your test
environments. Brainstorm with your team about how you can obtain the

Lisa’s Story

348 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

necessary hardware and software. It might take time, so develop a Plan B for
getting something done while waiting for the infrastructure you need.

If you’re working on a large system, you may have to queue up along with
other teams to get time on a test or staging environment that includes all of
the various pieces of software with which yours must work. This staging en-
vironment should mimic your production system as much as possible. If
your organization doesn’t have someone responsible for creating environ-
ments, your team might need extra roles dedicated to obtaining the test envi-
ronments you need. These roles might involve working with other teams as
well. Release planning is the time to consider all of these testing infrastruc-
ture requirements.

Test Data

Release or theme planning is also a good time to think about what test data
you might need during the project.

Using test data that closely resembles real data is generally a good practice.
Plan for the data you need. We’ve had the opportunity in several organiza-
tions to use a copy of production data. Real data provides a good base for
different scenarios for exploratory testing. Production data may need to be
“scrubbed” before it’s used for testing in order to remove any sensitive in-
formation such as identification or bank account numbers. The data needs
to be altered to hide the original values but remain valid so that it doesn’t
violate database restrictions. Because it takes time for database experts to
port production data to a test environment, be sure they’re included in your
planning.

In one of the organizations I was working with, we used two different baseline
test data schemes. For our individual test environments, we used Fit fixtures to
load predefined data. We tried to make this data as close to production as possi-
ble, but we also seeded it with some very specific test data. Every time we
checked out a new version of code, we were able to reload a base set of data. In
this way, we also tested the database schema as well to see if anything had
changed.

For our more stable test environment where we wanted data persisted, we used
the data migration scripts that the programmers developed as they made data-
base changes. These migration scripts were eventually used for the initial cut over
from production and by then we were pretty certain they were correct.

—Janet

Janet’s Story

TEST PLANNING 349

Enlist your customers’ support in obtaining meaningful test data. If you’re
working on a story that involves sending a file to a third-party vendor, your
business expert can find out what data the vendor expects in the file. Lisa’s
team developed features to allow retirement plan brokers to offer their cus-
tomers portfolios of mutual funds. They asked the product owner to provide
samples of portfolios, including a name, description, and set of funds for
each. This helped them test with realistic data.

Test data tends to get stale and out of date over time. Older data, even if it
came from production, may no longer accurately reflect current production
data. A “passing” test using data that’s no longer valid gives a misleading sense
of confidence. Continually review your test data needs. Refresh data or create
it using a new approach, as needed.

Test data requirements vary according to the type of testing. Regression tests
can usually create their own data or run against a small representational set
of data that can be refreshed to a known state quickly. Exploratory testing
may need a complete replica of production type data.

Test Results

Different teams have different requirements for test result reporting. Think
about how you are going to report test results at this stage of the game so that
you can do so effectively when the time comes to do the actual reporting.
Your organization may have audit compliance requirements, or maybe your
customer just wants to know how you tested. Understand your needs so that
you can choose the approach that is right for your team.

There are many ways to report test results. There are vendor tools that will
record both automated and manual results. Your team may find a way to per-
sist the results from tools such as Fit, or you may just choose to keep a big
visible manual chart.

The approach that a few teams have taken is to create home-grown test result
applications. For example, a simple Ruby application written with Ruby on
Rails for the database or a MySQL database with a PHP front end can make a
very simple but easy-to-use test management system.

A tool such as this can be very simple or can include added complexity such
as the capability to categorize your tests. The important thing is the test re-
sults. If your automated tests record their pass or fail result along with the er-
ror, you have some history to help determine fragility of the test.

Chapter 14, “An
Agile Test Automa-
tion Strategy,” ex-
plores different
approaches to ob-
taining test data

350 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

Your team can configure your automated build process to provide test results
from each build, by email, or a feedback utility or web interface that team
members can view online. Results over time can be summarized in a variety of
formats that make progress visible. One of Lisa’s teams produced a daily graph
of tests written, run, and passing that was posted in the team’s work area. An-
other produced a daily calendar with the number of unit tests passing every
day. Even simple visual results are effective.

We talk about some of the metrics you can use later in this chapter.

TEST PLAN ALTERNATIVES

We’ve talked about why to test plan and what you should consider. Now we
talk about some of the alternatives to the heavy test plans you may be used to.
Whatever type of test plan your organization uses, make it yours. Use it in a
way that benefits your team, and make sure you meet your customer’s needs.
As with any document your team produces, it should fulfill a purpose.

Lightweight Test Plans

If your organization or customer insists on a test plan for SOX compliance or
other regulatory needs, consider a lightweight test plan that covers the neces-
sities but not any extras. Do not repeat items that have already been included
in the Project Plan or Project Charter. A sample Test Plan might look some-
thing like the one shown in Figure 15-6.

A test plan should not cover every eventuality or every story, and it is not
meant to address traceability. It should be a tool to help you think about test-
ing risks to your project. It should not replace face-to-face conversation with
your customer or the rest of your team.

Using a Test Matrix

Janet uses release planning to work with the testers and customers to develop
a high-level test matrix. A test matrix is a simple way to communicate the big
picture concerning what functionality you want to test. It gives your team a
quick overview of the testing required.

A test matrix is just a list of functionality down the side and test conditions
across the top. When thinking about test conditions and functionality, con-
sider the whole application and any impact the new or changed functionality

TEST PLAN ALTERNATIVES 351

Figure 15-6 Sample Test Plan

Project ABC Test Plan
Prepared by: Janet Gregory and Lisa Crispin

Introduction
The Test Plan is intended as a baseline to identify what is deemed in and out of scope
for testing, and what the risks and assumptions are.

Resourcing

In Scope
Testing includes all new functionality, identified high-risk regression suite functionality,
UAT, and Load Testing. Localization is part of this project. Manual regression tests
deemed low priority will be run if time permits.

Out of Scope
Actual translation testing is outsourced, so it is not part of this test plan.

New Functionality
The following functionality is being changed in this release.

Performance & Load Testing
Load testing will concentrate on the following areas. Load testing details will be found
in the Load Test Plan document [link to Load Test Plan].

UAT (User Acceptance Testing)
UAT will be performed and coordinated with the Paris office as well as the Calgary
office. Users will be chosen for their expertise in select areas and transactions as well as
being fluent in one of the following languages: German, Italian, Spanish, or French.

Infrastructure Considerations
The test lab will need all 5 languages installed and available for testing.

Assumptions
Translation has been tested before being delivered to project team.

Risks
The following risks have been identified and the appropriate action identified to miti-
gate their impact on the project. The impact (or severity) of the risk is based on how
the project would be affected if the risk was triggered.

Tester % Committed
Janet 100%
Lisa 50%

Feature Description Depth of Testing
Adding new toggle for
language selection on
home page

Testing all 5 languages (English, Spanish, French, Italian,
and German). Testing that we are able to dynamically
switch languages.

Risk Impact Mitigation Plan
1 Users aren’t ready for UAT HIgh

352 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

might have on the rest of the application. Testers sitting with customers and
thinking about test conditions is what is important.

It can also be a mechanism to track coverage and can be as detailed as you
like. A high-level test matrix can be used by the team to show the customer
team or management what has been tested already and what is left. A more
detailed test matrix can be used by the team to show what is planned for test-
ing and track the progress of the testing. After the matrix has been created, it
becomes easy to fill in the squares when testing is done. Keep it simple. Be-
cause we like big visible charts that are easy to read, we recommend colors
that mean something to your team. For example, green (G) means testing is
done and the team is happy with it, while yellow (Y) might mean some test-
ing has been done but more exploratory testing is needed if there is time. Red
(R) means something is broken. A white square means it hasn’t been tested
yet, and a gray (not applicable) square means it doesn’t need to be tested.

Let’s look at an example. We have a small release we want to put out that cal-
culates shipping costs. In Figure 15-7, different pieces of functionality are
represented on one axis, and properties of the shipment are represented on
the other. Individual cells are color-coded to show which cases are tested and
which need more attention. All of the cells for “<= 2 lbs” are finished, the top
three cells for > 4 lbs are done but need more exploratory testing, and the
“Ship to Alaska”/“>4 lbs” cell denotes a possible issue.

Figure 15-7 A sample test matrix

Shipping Test Matrix

Test Conditions

Functionality Si
ng

le
 D

es
ti

na
ti

o
n

M
ul

ti
p

le
 D

es
ti

na
ti

o
ns

Ph
ys

ic
al

 A
d

d
re

ss

<
=

 2
 lb

s

2
–

4
lb

s

>
 4

 lb
s

Sa
m

e
D

ay

N
ex

t
D

ay

<
 5

 B
us

in
es

s
D

ay
s

Sh
ip

p
in

g
Es

ti
m

at
es

Ship within US G G Y

Ship to Canada G Y

Ship to Hawaii G Y

Ship to Alaska G R

Shipping estimates G n/a

TEST PLAN ALTERNATIVES 353

I had an unexpected side effect from using a test matrix in one project I was on.
The customers and testers put the test matrix together, and had thought of all af-
fected functionality for the project and the high-level test conditions they would
need. As expected, the act of planning brought a lot of issues out that would
have been missed until later.

When they hung the matrix on the wall in their team area, Dave, the developer
team lead, expressed an interest. One of the testers explained the matrix to him,
and I was surprised when he said it was very useful for them as well. Dave said
“I didn’t know that this functionality would affect this area. We need to make sure
our unit tests touch on this as well.”

Looking back on this, I shouldn’t have been surprised, but I had never had that ex-
perience with the programmers before.

—Janet

A test matrix is a very powerful tool and can be used to help address trace-
ability issues if your team has those problems. Think about what makes sense
for your team and adapt it for your team and what makes sense to you.

Test Spreadsheet

Janet has also seen a spreadsheet format used with some success. For exam-
ple, at WestJet, the first tab in a workbook was a high-level list of functional-
ity that existed in the application. For each row, the team determined if the
project affected that piece of functionality. If so, they gave a rating of the ex-
pected impact. After the impact of the changes had been determined, deci-
sions about test environments, test data, or UAT could then be made.

Tabs were used for risks and assumptions but could be used for anything
your team may need. A flexible format such as a spreadsheet means you can
tailor it to work for you.

This information can be used in a number of different ways. It can be used to
determine where to concentrate your exploratory testing efforts, or maybe to
help create a high-level test matrix to make sure you touch on all of the areas
during your testing.

A Whiteboard

If your team is informal and has small releases, any kind of documentation
may be too much. Sometimes it’s enough to list the risks and assumptions on
a whiteboard or on index cards. Janet has used a whiteboard to manage risks,

Janet’s Story

354 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

and it worked quite well. If a risk actually became an issue, the result was
documented and crossed off. It was easy to add new risks and mitigation
strategies, and the list was visible to the whole team. This could also be done
on a wiki page.

We cannot stress enough that you need to know your team and its needs.

Automated Test List

Sometimes you may be required to present more information to your cus-
tomers, such as a list of test cases. If your team has a tool from which you
could extract a list of test case names, you could provide this list easily to any-
one who needed it. This would present more of a traditional type detailed test
plan but wouldn’t be available until after tests were actually written. We don’t
recommend spending any time on this because we don’t see added value, but
sometimes this list may be required for risk assessment or auditability.

PREPARING FOR VISIBILITY

If your team is just getting started with agile development, make sure you have
necessary infrastructure in place for your early iterations. You may change the
way you are tracking progress as you go along, and your retrospectives will
help you bring these issues to light. If you’re having problems completing the
work planned for each iteration, maybe you need more visible charts or visual
aids to help you gauge progress and make mid-iteration adjustments. Do your
customers have some way to know how the iteration is progressing and which
stories are done? Take time before the each iteration to evaluate whether
you’re getting the right kind of feedback to keep track of testing.

Tracking Test Tasks and Status

The effective agile teams we know all follow this simple rule: “No story is done
until it’s tested.” This rule can be expanded to say that not only must the story
be tested, the code must be checked in, it must have automated tests that are
run by a continual build process, it must be documented, or whatever your
team’s “doneness” criteria are. At any time during an iteration, you need to be
able to quickly assess how much testing work remains on each story, and which
stories are “done.” Story or task boards are ideal for this purpose, especially if
they use color-coding to denote test tasks vs. development and other types of
tasks. Cork boards, steel sheets with magnets, poster-sized sticky notes, or
whiteboards all work fine. Give each story its own row, and order them by pri-
ority. Have columns for “to do,” “work in progress,” “verify,” and “done.”

PREPARING FOR VISIBILITY 355

I started with team members who had been doing agile for a few months with
only a couple of programmers and one tester. They had been using XPlanner to
track their tasks and stories, and it was working ok for them. At the same time I
came on board, a couple of new programmers were added, and the stand-ups
became less effective; the team was not completing the stories it had planned. I
suggested a storyboard, and although they were skeptical about keeping two sets
of “tasks,” they said they would try it.

We took an open wall and used stickies to create our story board. We started hav-
ing stand-ups in front of the story board and our discussion became more spe-
cific. It provided a nice visible way of knowing when the tasks were done and
what was left to do. After a couple of months, the team grew again and we had to
move the story board into an office. We also moved our stand-ups and our test re-
sult charts there. However, the constant visibility was lost, and programmers and
testers stopped moving their tasks.

We had to reevaluate what we wanted to do. One size does not fit all teams.
Make sure you plan for what is right for your team.

—Janet

Some teams use different colored index cards for the different types of tasks:
green for testing, white for coding, yellow and red for bugs. Other teams use
one card per development task, and add different colored stickers to show that
testing is in progress or show that there are bugs to resolve. Use any method
that lets you see at a quick glance how many stories are “done,” with all cod-
ing, database, testing, and other tasks completed. As the iteration progresses,
it’s easy to see if the team is on track, or if you need to pull a story out or have
programmers pitch in on testing tasks.

Our story board (shown in Figure 15-8) wasn’t very big, and we didn’t have a lot
of wall space to expand to have the regular column-type task board. Instead, we
decided to use stickers to designate the status.

White cards, such as those shown in the first row of Figure 15-8, were regular
tasks, blue cards designated technical stories such as refactoring or spikes, and
pink cards, shown toward the right-hand side of the board as the darkest color,
were bugs that need to be addressed. It is easy to see that this picture was taken
at the beginning of an iteration because there are no colored circles on each
card. In the top right-hand corner, you can see the legend. Blue stickers meant it
has been coded, green would indicate done (tested), and red meant the task has
been deemed not completed or a bug was rejected as not fixed. As a task or
story was completed (i.e., green sticker), it was moved to the right of the board.

—Janet

Janet’s Story

Janet’s Story

356 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

For more than four years, our story board was a couple of sheets of sheet metal,
painted in company colors, using color-coded index cards attached to the board
with magnets. Figure 15-9 shows a picture of it early in an iteration. Our task cards
were also color-coded: white for development tasks, green for coding tasks, yel-
low and red for bugs, and striped for cards not originally planned in the iteration.
The board was so effective in indicating our progress that we eventually stopped
bothering with a task burndown chart. It let us focus on completing one story at a
time. We also used it to post other big visible charts, such as a big red sign show-
ing the build had failed. We loved our board.

Then, one of our team members moved overseas. We tried using a spreadsheet
along with our physical story board, but our remote teammate found the spread-
sheet too hard to use. We tried several software packages designed for Scrum
teams, but they were so different from our real story board that we couldn’t ad-
just to using them. We finally found a product (Mingle) that looked and worked
enough like our physical board that everyone, including our remote person, could
use it. We painted our old story board white, and now we can project the story
board on the wall during stand-up meetings.

—Lisa

Lisa’s Story

Figure 15-8 Example story board

PREPARING FOR VISIBILITY 357

Distributed teams need some kind of online story board. This might be a
spreadsheet, or specialized software that mimics a physical story board as
Mingle does.

Communicating Test Results

Earlier, we talked about planning how to track test results. Now we want to
talk about effectively communicating them. Test results are one of the most
important ways to measure progress, see whether new tests are being written
and run for each story, and whether they’re all passing. Some teams post big
visible charts of the number of tests written, run, and passed. Others have
their build process email automated test results to team members and stake-
holders. Some continuous integration tools provide GUI tools to monitor
builds and build results.

We’ve heard of teams that have a projector hooked up to the machine that runs
FitNesse tests on a continuous build and displays the test results at all times.
Test results are a concrete depiction of the team’s progress. If the number of

Figure 15-9 Another sample story board

358 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

tests doesn’t go up every day or every iteration, that might indicate a problem.
Either the team isn’t writing tests (assuming they’re developing test-first), or
they aren’t getting much code completed. Of course, it’s possible they are rip-
ping out old code and the tests that went with it. It’s important to analyze why
trends are going the wrong way. The next section gives you some ideas about
the types of metrics you may want to gather and display.

However your team decides they want to communicate your progress, make
sure you think about it up front and everyone gets value from it.

Release Metrics

We include this section here, because it is important to understand what
metrics you want to gather from the very beginning of a release. These met-
rics should give you continual feedback about how development is proceed-
ing, so that you can respond to unexpected events and change your process
as needed. Remember, you need to understand what problem you are trying
to solve with your metrics so that you can track the right ones. The metrics
we talk about here are just some examples that you may choose to track.

Number of Passing Tests

Many agile teams track the number of tests at each level: unit, functional,
story tests, GUI, load, and so on. The trend is more important than the num-
ber. We get a warm fuzzy feeling seeing the number of tests go up. A number
without context is just a number, though. For example, if a team says it has
1000 tests, what does that mean? Do 1000 tests give 10% or 90% coverage?
What happens when code that has tests is removed?

Tracking the number of tests written, running, and passing at a story level is
one way to show a story’s status. The number of tests written shows progress
of tests to drive development. Knowing how many tests aren’t passing yet
gives you an idea of how much code still needs to be written.

After a test passes, it needs to stay “green” as long as the functionality is
present in the code. Graphs of the number of tests passing and failing over
time show whether there’s a problem with regression failures and also show
the growth of the code base. Again, it’s the trend that’s important. Watch for
anomalies.

These types of measurements can be reported simply and still be effective.

PREPARING FOR VISIBILITY 359

My team emails a color-coded calendar out every day showing whether the “full
build” with the full suite of regression tests passed each day (see Figure 15-10).
Two “red” days in a row (the darkest color) are a cause for concern and noticed
by management as well as the development team. Seeing the visual test results
helps the organization pull together to fix the failing tests or any other problems
causing the build to not run, such as hardware or database issues.

—Lisa

There are different ways to measure the number of tests. Choose one and try
to stay consistent across the board with all types of tests, otherwise your met-
rics may get confusing. Measuring the number of test scripts or classes is one
way, but each one may contain multiple individual test cases or “asserts,” so it
may be more accurate to count those.

If you’re going to count tests, be sure to report the information so that it can be
used. Build emails or build status UIs can communicate the number of tests
run, passed, and failed at various levels. The customer team may be content

Lisa’s Story

Figure 15-10 Full build result email from Lisa’s team

360 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

to see this information only at the end of each sprint, in the sprint review, or
an email.

Whatever metrics you choose to gather, be sure the team buys into them.

I started a new contract with a team that had been doing agile for a couple of
years, and they had developed a large number of automated functional tests. I
started keeping track of the number of tests passing each day. The team didn’t see
a problem when the trending showed fewer and fewer tests were passing. The
unit tests were maintained and were doing what they were supposed to do, so
the team felt confident in the release. It seemed this happened with every re-
lease, and the team would spend the last week before the release to make all of
the tests pass. It was costly to maintain the tests, but the team didn’t want to slow
down to fix them. Everyone was okay with this except me.

I did not see how fixing the tests at that late date could ensure the right expected
results were captured. I felt that we ran the risk of getting false positives.

At the start of the next release cycle, I got the team to agree to try fixing the tests
as they broke. It didn’t take long for the team to realize that it wasn’t so tough to
fix the tests as soon as we knew they were broken, and we found a lot of issues
early that hadn’t usually been caught until much later. The team soon set a goal of
having 95% of the tests passing at all times.

We also realized how brittle the tests were. The team made a concerted effort to
refactor some of the more complex tests and eliminate redundant ones. Over
time, the number of high-level tests was reduced, but the quality and coverage
was increased.

We started out measuring passing rates, but we ended up with far more.

—Janet

Don’t get so caught up in the actual measurements that you don’t recognize
other side effects of the trending. Be open to adjusting what you are measur-
ing if the need is there.

Code Coverage

Code coverage is another traditional metric. How much of our code is exer-
cised by our tests? There are excellent commercial and open source code cov-
erage tools available, and these can be integrated into your build process so
that you know right away if coverage has gone up or down. As with most met-
rics, the trend is the thing to watch. Figure 15-11 shows a sample code coverage
report.

Janet’s Story

PREPARING FOR VISIBILITY 361

Figures 15-12 and 15-13 are two examples of trends that work together.
Figure 15-12 shows a trend of the total number of methods each iteration. Fig-
ure 15-12 is the matching code coverage. These examples show why graphs
need to be looked at in context. If you only look at the first graph showing
the number of methods, you’ll only get half the story. The number of meth-
ods is increasing, which looks good, but the coverage is actually decreasing.
We do not know the reason for the decreased coverage, but it should be a
trigger to ask the team, “Why?”

Remember that these tools can only measure coverage of the code you’ve
written. If some functionality was missed, your code coverage report will not

Figure 15-11 Sample code coverage report from Lisa’s team. “Ghidrah” is the new architecture;
“Whitney” is the legacy system.

GHIDRAH

Overall Coverage Summary

Overall Stats Summary

WHITNEY

Overall Coverage Summary

Overall Stats Summary

Name Class, % Method, % Block, % Line, %
all classes 95% (1727/1809) 77% (13605/17678) 72% (201131/279707) 75% (43454.5/58224)

total packages: 240
total executable files: 1329
total classes: 1809
total methods: 17678
total executable lines: 58224

Name Class, % Method, % Block, % Line, %
all classes 15% (109/737) 8% (669/8760) 4% (16292/363257) 5% (3713.7/80358)

total packages: 46
total executable files: 655
total classes: 737
total methods: 8760
total executable lines: 80358

362 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

Figure 15-12 Number of methods trend

Figure 15-13 Test coverage

PREPARING FOR VISIBILITY 363

bring that to light. You might have 80% code coverage with your tests, but
you’re missing 10% of the code you should have. Driving development with
tests helps avoid this problem, but don’t value code coverage statistics more
than they deserve.

Good metrics require some good planning. Extra effort can give you more
meaningful data. Pierre Veragen’s team members use a break-test baseline
technique to learn if their code coverage metric is meaningful. They manu-
ally introduce a flaw into each method and then run their tests to make sure
the tests catch the problem. Some tests just make sure the code returns some
value, any value. Pierre’s team makes sure the tests return the correct value. In
this way, they can determine whether their test coverage is good enough.

Know What You Are Measuring
Alessandro Collino, a computer science and information engineer with Onion
S.p.A. who works on agile projects, told us about an experience where code
coverage fell suddenly and disastrously. His agile team developed middle-
ware for a real-time operating system on an embedded system. He explained:

A TDD approach was followed to develop a great number of good unit
tests oriented to achieve good code coverage. We wrote many effective
acceptance tests to check all of the complex functionalities. After that,
we instrumented the code with a code coverage tool and reached a
statement coverage of 95%.

The code that couldn’t be tested was verified by inspection, leading them
to declare 100% of statement coverage after ten four-week sprints.

After that, the customer required to us to add a small feature before we
delivered the software product. We implemented this request and ap-
plied the code optimization of the compiler.

This time, when we ran the acceptance tests, the result was disastrous;
47% of acceptance tests failed, and the statement coverage had fallen
down to 62%!

What happened? The problem turned out to be due to enabling compiler
optimization but with an incorrect setting. Because of this, a key value was
read once as the application started up and was stored in a CPU register.
Even when the variable was modified in memory, the value in the CPU register
was never replaced. The routine kept reading this same stale value instead of
the correct updated value, causing tests to fail.

Alessandro concludes, “The lesson learned from this example is that the en-
abling of the compiler optimization options should be planned at the beginning
of the project. It’s a mistake to activate them at the final stages of the project.”

364 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

Code coverage is just one small part of the puzzle. Use it as such. It doesn’t tell
you how good your tests are but only if a certain chunk of code was run during
the test. It does not tell you if different paths through the application were run,
either. Understand your application and try identifying your highest risk areas,
and set a coverage goal that is higher for those areas than for low-risk areas.
Don’t forget to include your functional tests in the coverage report as well.

Defect Metrics

As your team sets goals related to defects, use appropriate metrics to measure
progress toward those goals. There are trends that you will want to monitor
for the whole release, and there are ones that are iteration-specific. For exam-
ple, if you’re trying to achieve zero defects, you may want to track the open
bugs at the end of each iteration, or how many bugs were found after devel-
opment but before release. Most of us are interested in knowing how many
defects have been reported after the code is in production, which is some-
thing completely different altogether. These issues will tell you after the fact
how well your team did on the last release, but not how well you are doing on
the current release. They may give you some indication of what processes
you need to change to reduce the number of defects. Lisa’s team is more con-
cerned with production defects found in the “new” code that was rewritten
in the new architecture. They’re working hard to produce this new code with
zero defects, so they need to know how well they’re doing. They expect that
bugs will be found fairly often in the legacy system, where only the most crit-
ical functionality is covered by automated GUI smoke tests, and there are few
automated unit and behind-the-GUI tests.

Knowing the defect rate of legacy code might be good justification for refac-
toring or rewriting it, but the team’s top priority is doing a good job with the
new code, so they group bugs by “new” and “old” code, and focus on the
“new” bugs.

Make sure your bug database can track what you want to measure. You may
have to make some changes in both the database and your process to get the
data you need. For example, if you want to measure how many defects were
found in production after a release, you have to make sure you have environ-
ment and version as mandatory fields, or make sure that people who enter
bugs always fill them in.

Because defect tracking systems are often used for purposes besides tracking
bugs, be sure not to muddle the numbers. A request for a manual update to
the database doesn’t necessarily reflect an issue with the existing code. Use
your defect tracking tool properly to ensure that your metrics are meaningful.

More on defect
tracking systems
can be found in
Chapter 5, “Transi-
tioning Traditional
Processes.”

PREPARING FOR VISIBILITY 365

Periodically evaluate the metrics you’re reporting and see if they’re still relevant.
Figure 15-14 shows two defect reports that Lisa’s team used for years. When we
first transitioned to agile, managers and others looked at these reports to see the
progress that resulted from the new process. Four years later, our ScrumMaster
found that nobody was reading these reports anymore, so we quit producing
them. By that time, rates of new defects had reduced dramatically, and nobody
really cared about the old defects still hanging about in the legacy code.

—Lisa

Lisa’s Story

Figure 15-14 Sample defect reports used (and no longer used) by Lisa’s team

366 CHAPTER 15 � TESTER ACTIVITIES IN RELEASE OR THEME PLANNING

Release planning is a good time to evaluate the ROI of the metrics you’ve
been tracking. How much effort are you spending to gather and report the
metrics? Do they tell you what you need to know? Does the code you release
meet your team’s standards for internal quality? Is the code coverage percent-
age going up? Is the team meeting its goals for reducing the number of de-
fects that get out to production? If not, was there a good reason?

Metrics are just one piece of the puzzle. Use your release, theme, or project
planning meetings to refocus on delivering business value when the business
needs it. Take some time to learn about the features you’re about to develop.
Don’t get caught up with committing to your plans—the situation is bound
to change. Instead, prepare for doing the right activities and getting the right
resources in time to meet the customers’ priorities.

SUMMARY

As your team puts together its plan for a new theme or release, keep the main
points of this chapter in mind.

� When sizing a story, consider different viewpoints, including business
value, risk, technical implementation, and how the feature will be
used. Ask clarifying questions, but don’t get bogged down in details.

� Testers can help identify the “thin slice” or “critical path” through a
feature set to help prioritize stories. Schedule high-risk stories early if
they might require extra testing early.

� The size of testing effort for a story helps determine whether that
story is in scope for the release.

� Testers can help the team think about how new stories will impact the
larger system.

� Plan for extra testing time and resources when features may affect sys-
tems or subsystems developed by outside teams.

� As the team identifies the scope of the release, evaluate the scope of
testing and budget enough time and resources for it.

� Spend some time during release planning to address infrastructure,
test environment, and test data concerns.

� A lightweight, agile test plan can help make sure all of the testing con-
siderations are addressed during the life of the release or project.

� Consider alternatives to test plans that might be more appropriate for
your team; test matrices, spreadsheets, or even a whiteboard may be
sufficient.

SUMMARY 367

� Formal release planning may not be appropriate for your situation. In
the absence of release planning, consider identifying and discussing at
least the first few stories that should be done first.

� Plan for what metrics you want to capture for the life of the release;
think about what problem you are trying to solve and capture only
those metrics that are meaningful for your team.

This page intentionally left blank

369

Chapter 16

HIT THE GROUND RUNNING

In agile development, we generally like to do tasks “just in time.” We can’t see
around the curves in the road ahead, so we focus on the activities at hand. Then
again, we want to hit the ground running when we start each new iteration.
That may require a little preparation. Baking is a good analogy here. You decide
you want to bake cookies because someone is coming over. Before you start, you
make sure you have the right ingredients. If you don’t, you either go buy what
you need, or you choose a different kind to make.

Don’t go overboard—if a pre-iteration activity doesn’t save time during the
iteration, or help you do a better job, don’t do it before the iteration. Do what is
appropriate for your team, and keep experimenting. Maybe you’ll do some of
these activities after the iteration starts instead. Here are some ideas to think
about that might help you “bake quality in” to your product.

BE PROACTIVE

In Chapter 2, “Ten Principles of an Agile Tester,” we explained how agile
testers have to shift their mind-set. Instead of waiting for work to come to
us, we develop a proactive attitude where we get up and go look for ways to

Advance Clarity

Test Strategies Examples

Prioritize Defects

Benefits

Do You Really Need This?

Potential Downsides to Advanced Preparation

Be Proactive

Customers Speak with One Voice

Story Size

Geographically Dispersed Customers and Teams

Resources

Before the
Iteration

370 CHAPTER 16 � HIT THE GROUND RUNNING

contribute. With the fast and constant pace of agile development, it’s easy to
get immersed in the current iteration’s stories. We are so busy making sure
we’ve covered the features with up-front tests, performing exploratory test-
ing to be sure we’ve understood the business requirements, and automating
adequate regression tests, it’s hard to think of anything else. However, it’s
sometimes appropriate to take a bit of time to help our customers and our
team prepare for the next iteration. When our team is about to break new
ground, or work on complex and risky stories, some work before the itera-
tion can help maximize our team’s velocity and minimize frustration.

We sure don’t want to spend all our time in meetings, or planning for stories
that might be re-prioritized. However, if we can make our iteration planning
go faster, and reduce the risk of the stories we’re about to undertake, it’s
worth doing some research and brainstorming before we start the iteration.

Benefits

Working on stories in advance of the iteration may be especially useful for
teams that are split across different geographic locations. By working ahead,
there’s time to get information to everyone and give them a chance to give
their input.

The problem is that we’re so busy during each short agile iteration that it’s
hard to find time to meet about the next iteration’s stories, much less start
writing test cases. If your iterations always go smoothly, with stories delivered
incrementally and plenty of time to test, and the delivered software matches
customer expectations, you may not need to take time to prepare in advance.
If your team has trouble finishing stories, or ends up with big mismatches be-
tween actual and desired behavior of features, a little advance planning may
save you time during the iteration.

Our team used to feel we didn’t have time to plan in advance for the next itera-
tion. After many experiences of misunderstanding stories and having them far ex-
ceed estimations, and finding most “bugs” were missed requirements, we decided
to budget time in the iteration to start talking about the next one. Now the whole
team, including the product owner and other customers as needed, meet for an
hour or less the day before the planning meeting for our next sprint.

We laughingly call this the “pre-planning” meeting. We go over the stories for the
next iteration. The product owner explains the purpose of each story. He goes
over the business conditions of satisfaction and other items in his story checklists,
and gives examples of desired behavior. We brainstorm about potential risks and
dependencies, and identify steel threads where appropriate.

Lisa’s Story

BE PROACTIVE 371

Sometimes it’s enough to spend a few minutes listening to the product owner’s
explanation of the stories. At other times, we take time to diagram thin slices of a
story on the whiteboard. Figure 16-1 shows an example diagram where we got
into both the details of the UI flow and the database tables. Note the numbers for
the “threads.” Thread #1 is our critical path. Thread #2 is the second layer, and so
on. We upload photos of these diagrams to the wiki so our remote developer can
see them too.

We can start thinking about what task cards we might write the next day and
what approach we might take to each story. For some reason, being able to rumi-
nate about the stories overnight makes us more productive in the actual iteration
planning meeting the next day. After doing this for a few iterations, we were
spending less time overall in planning the iteration, even though we had two
meetings to do it.

Sometimes we pull in other customers to discuss stories that affect them directly. If
they aren’t available right then, we still have time before our iteration planning
meeting to talk to them to clarify the story.

In one pre-planning meeting, our product owner introduced a story about ob-
taining performance data for mutual funds. We would send a file to the vendor
containing a list of mutual funds, and the vendor would provide an XML file on a
website with all the latest performance information for those funds. We would
then upload that data into our database.

Figure 16-1 Sample planning whiteboard diagram

372 CHAPTER 16 � HIT THE GROUND RUNNING

In the pre-planning meeting, we asked questions such as, “What’s the format of
the file we send the vendor?” “Is the ‘as-of’ date for each fund always the last day
of the month?” “Is there any security on the website that contains the XML?” “Will
we ever get a record for the same fund and “as-of” date that has new data, or can
we ignore records with a date we already have in our database?”

By the next day’s iteration planning meeting, the product owner had obtained an-
swers to all our questions. Writing task cards went quickly, and coding could pro-
ceed with correct assumptions.

Often, we find a much simpler solution to a story when we discuss it in the pre-
iteration planning discussion. We found that to go fast, we needed to slow down
first.

—Lisa

Do You Really Need This?

Your team may not need much or any advance preparation. Pierre Veragen
and Erika Boyer described to Lisa how their teams at iLevel by Weyerhaeuser
write user acceptance tests together at their iteration kickoff meeting.

These tests, which were written on a wiki page or some similar tool along
with the story narrative, are used later when team members write task cards
for each story and start writing more tests and code. Examples are turned
into executable tests. Because the tests change as the team learns more about
the story, the team may opt not to maintain the original ones that were writ-
ten at the start. Keep it simple to start with, and dig into details later.

Lisa subsequently observed one of their planning sessions and saw first-hand
how effective this technique was. Even when the product manager provides
concrete examples, turning them into tests may flush out missing require-
ments. Their team did not need to do this before the iteration planning ses-
sion, but it is not the case with all teams.

My team liked the practice of writing tests together, but because we were writing
task cards during iteration planning, we decided to write user acceptance tests
together during the pre-planning meeting. We found this kept our discussions fo-
cused and we understood each story more quickly. We also did a better job of
delivering exactly what the customer had in mind. Our customers noticed a differ-
ence in quality, and our product owner encouraged us to continue this practice.

—Lisa

Lisa’s Story

ADVANCE CLARITY 373

Experiment with short pre-iteration discussions and test-writing sessions.
It’ll take you several iterations to find your team’s rhythm, and find out if ad-
vance story discussions make you more productive during the iteration.

Potential Downsides to Advance Preparation

There’s a risk to “working ahead.” You could spend time learning more de-
tails about a feature only to have the business people re-prioritize at the last
minute and put that feature off indefinitely. Invest preparation time when it’s
appropriate. When you know you have a complex theme or story coming up,
and it has a hard deadline such as Lisa’s team had with the statement story,
consider spending some time up front checking out different viewpoints.
The only reason to discuss stories in advance is to save time during iteration
planning and during development. A deeper understanding of the feature be-
havior can speed up testing and coding, and can help make sure you deliver the
right functionality.

If your situation is so dynamic that stories might be re-prioritized the day that
the iteration starts, it isn’t worth trying to do this planning. Instead, make
sure you budget time for these discussions during your planning meeting.

ADVANCE CLARITY

Lisa’s product owner, Steve Perkins, came up with the term “advance clarity.”
Different parts of each organization have different priorities and agendas.
For example, Business Development is looking for new features to attract
new business, while Operations is prioritizing features that would reduce the
number of phone calls from users. The development team tries to understand
the range of business needs and get a feel for each individual’s job.

With many different agendas, someone needs to decide what stories should
be implemented in the next iteration. Because there are many ways to imple-
ment any given story, someone has to decide the specific requirements and
capture them in the form of examples, conditions of satisfaction, and test
cases. Steve gets everyone together to agree on the value they want from each
story, and to provide “advance clarity.”

Customers Speak with One Voice

Scrum provides the helpful role of the product owner to help all the custom-
ers “Speak with One Voice.” Whether or not you’re on a Scrum team, find
some way to help your customers agree on the priority of the stories and how

374 CHAPTER 16 � HIT THE GROUND RUNNING

the components of each story ought to be implemented. Management sup-
port is crucial, because any person in this role needs time and authority to
get everyone on the same page.

Other teams use business analysts to help flesh out the stories before the next
iteration. In one organization Janet worked with, the customers were not
available full-time to answer questions, but each team had a business analyst
that worked with the customers to flesh out the requirements before the iter-
ation planning meeting. If there were any questions that she could not an-
swer at the meeting, the team either called the customer directly or the
analyst followed up immediately after the meeting.

As a tester, you want to sit in on story writing and prioritization meetings.
Ask questions that help the customers focus on the core functionality, the
critical business value they need. Help participants stay focused on concrete
examples that crystallize the meaning of the stories. In meetings that involve
multiple customers, it is critical to have a strong facilitator and a method for
determining consensus.

As with code, stories are best if they have the bare minimum. For example, an
Internet shopping cart needs some way to delete unwanted items, but the
ability to move items from the cart to a “save for later” list can probably wait.
It may be helpful to talk about this before the iteration, so that the team is
clear on what tasks need to be planned. Focus on the simplest thing first and
use an example to make it clear.

Get All Viewpoints

Getting requirements from different customers for a story, each of whom has
a different agenda, might create chaos. That’s why it’s essential for someone
on the customer team to get consensus and coordinate all points of view.
This doesn’t mean we shouldn’t get input from different customers. As a
tester, you’re considering each story from multiple points of view. It helps to
know what the story means to people in different roles.

When my company decided to redesign the retirement plan participants’ quarterly
account statements, different people on the business side wanted changes for
different reasons. The plan administrators wanted a clearly understandable layout
that would minimize the number of calls from confused participants to customer
support.

For example, they wanted the statement to show the date and amount of the par-
ticipant’s most recent contribution. This helps the participant know whether her

Lisa’s Story

ADVANCE CLARITY 375

employer is late in posting contributions to the accounts. Business development
wanted jazzy new features that they could sell to potential customers, such as
graphs of performance by fund category. Our legal person needed some new text
and data on the statement to satisfy federal regulations.

While the product owner balanced all the different needs and presented the final
statement layout, it was still important for our team to understand the purpose
behind each new piece of information. We needed to talk directly to business ex-
perts in the plan administration, business development, and legal areas, and to
the product owner. A tester and a programmer met with each group to gather the
different viewpoints. By doing this before starting on stories to gather and display
data, we understood the requirements much more clearly and even made sugges-
tions to produce the information more efficiently.

—Lisa

Make sure you are as efficient as possible in collecting this data. Sometimes it
is important for the whole team to understand the need, and sometimes it is
sufficient for one or two of the team members to do the research.

Story Size

As you discuss stories for the next iteration with the customer team mem-
bers, ask questions to help them make sure each story delivers the value
needed. This is a good time to identify new stories they might need to write.
Even though the team sized the stories previously, you might find a story is
bigger than previously thought. You might even discover that a feature can be
implemented more simply than planned, and the story can be smaller.

Sometimes assumptions are made when the story is sized and on further in-
vestigation turn out to be false. Even simple stories deserve a closer look. It’s
hard for any one person to remember all the details of an application.

Here are some examples of stories that turned out to be significantly bigger or
smaller than originally thought.

1. The story was to produce a file of account statements for all participants in a
given company retirement plan, which was to be sent to a vendor who would
print and mail the statements. It was originally sized with the assumption that
all statements were exactly three pages long. Upon further investigation, we
discovered that some participants had four-page statements, but the vendor
required that all statements be the same length. Our business experts had to
decide whether to have a feature to flag any plans whose participants had
four-page statements and deal with those manually, or change the statements
to make them all four pages long. That’s a much bigger effort than the original

Lisa’s Story

376 CHAPTER 16 � HIT THE GROUND RUNNING

story. After we started developing the story, the customers revealed another
requirement: If any participant’s address was missing or invalid, the statement
should be mailed to the employer instead. It’s reasonable, but we didn’t know
about it when we sized the story.

2. Our customers wanted to start displaying the sales phone number in various
locations in the UI. There is a different sales phone number for each partner’s
site, and at the time there were about 25 different partner sites. This sounded
like such a straightforward story that it wasn’t even given to the team to size.
The development manager just assigned it a small point value, and it was just
“added” to the iteration. He had assumed the phone number was stored in the
database, when in fact it was hard-coded in the HTML of each partner’s “con-
tact” page. Storing the correct number for each partner in the database, and
changing the code to retrieve the value, made the story twice as big, and there
wasn’t room for it in that iteration, so it did not get done.

3. We sized a story for the user interface to allow administrators to submit a
request for a batch job to rebalance participant accounts that met a certain
condition. It included a confirmation page displaying the number of partici-
pants affected. Because the request was queued to run as an asynchronous
batch job, the code to determine which participants were affected was in the
batch job’s code. Refactoring the code to obtain the number of participants at
request time was a big job. After we started working on the story, we asked
the primary user of the feature whether he really needed that number upon
submitting the request, and he decided it wasn’t necessary. The story became
much smaller than originally thought. We always ask questions to find out the
true business value that the customers want and eliminate components that
don’t have a good ROI.

—Lisa

These stories show that a few questions up front might save time during the
iteration that could be spent figuring out what to do with new discoveries.
However, we recognize that not all discoveries can be found early. For exam-
ple, on the first story, a simple question about statement size may have pre-
vented last-minute confusion about how to handle four-page statements,
but the inaccurate address issue may not have been considered until it was
being coded or tested.

We know there will always be discoveries along the way, but if we can catch
the big “gotchas” first, that will help the team work as effectively as possible.

Geographically Dispersed Teams

Some preparation for the next iteration may be useful for teams that are split
across different locations. Teams that are distributed in multiple locations
may do their iteration planning by conference call, online meeting, or telecon-
ference. One practice, which a team of Lisa’s used, is to assign each team a

ADVANCE CLARITY 377

subset of the upcoming stories and have them write task cards in advance.
During the planning meeting, everyone can review all the task cards and make
changes as needed. The up-front work enhances communication, makes the
stories and tasks visible to everyone, and speeds up the planning process.

Of course, this assumes that the team is using an electronic story or task
board. Lisa’s team uses Thoughtwork’s Mingle, but there are many other
products out there that serve this purpose.

If customers aren’t readily available to answer questions and make decisions,
other domain experts who are accessible at all times should be empowered
to guide the team by determining priorities and expressing desired system

Coping with Geographic Diversity
We talked to a team we know at a software company that has customers, de-
velopers, and testers spread all over the globe. Not only are the customers
far away from the technical team but they don’t have bandwidth to be avail-
able to answer the development team’s questions. Instead, the team relies
on functional analysts who understand both the business side of the applica-
tion at a detailed level and the technical implementation of the software.
These functional analysts act as liaisons between the business and technical
teams.

Patrick Fleisch and Apurva Chandra are consultants who were working with
this company and served as functional analysts on a project to develop web-
based entitlement software, because they are experts in this domain. They
traveled between locations to facilitate communication between stakehold-
ers and developers.

The functional analysts worked in advance of the iteration, sizing and getting
stories ready to size, helping the technical team to understand the stories.
They entered stories into an online tool and built on them by defining test
cases, edge conditions, and other information that helped the technical team
understand the story. They documented high-level functionality on a wiki
aimed at the business users.

Apurva and Patrick played a key role in making the decisions that the techni-
cal team needed to get started with the new stories. Their deep business and
technical understanding allowed them to provide the team with require-
ments they needed to get coding, because the actual customers weren’t
available to them. David Reed, a tester and automation engineer, told us how
he relied on Apurva and Patrick for the information he needed to perform
and automate tests. While agile principles say to collaborate closely with the
customer, in some situations you have to be creative and find another way to
get clear business requirements.

378 CHAPTER 16 � HIT THE GROUND RUNNING

behavior with examples. Testers and business analysts are often called upon
to do these activities.

EXAMPLES

You may notice that we talk about examples in just about every chapter of
this book. Examples are an effective way to learn about and illustrate desired
(and undesired) functionality; it’s worth using them throughout your devel-
opment cycle. Our motto was coined by Brian Marick: “An example would be
handy right about now.” (See Figure 16-2.) Start your discussions about fea-
tures and stories with a realistic example. The idea has taken off, so that at a
recent workshop for functional testing we were discussing ideas around call-
ing it “Example-Driven Development.”

When Lisa’s team members meet with their product owner to talk about the
next iteration, they ask him for examples of desired behavior for each story.
This keeps the discussion at a concrete level and is a fast way to learn how the
new features should work. Have a whiteboard handy while you do this, and
start drawing. If some team members are in a distant location, consider using
tools that allow everyone to see whiteboard diagrams and participate in the
discussion. Go through real examples with your customers or their proxies.
As during release planning, consider different points of view: the business,
end users, developers, and business partners. Unlike release planning, you
are looking at far more detail because these are the stories you are planning
for the next iteration.

Using examples, you can write high-level tests to flesh out each story a bit
more. You may not need to do this before the iteration starts, but for com-

Figure 16-2 Brian Marick’s example sticker

EXAMPLES 379

plex stories, it can be a good idea to write at least one happy path and one
negative path test case in advance. Let’s consider the story in Figure 16-3.

The product owner sketches out the desired UI on the whiteboard. There’s a
“delete” checkbox next to each item and an “update cart” button. The user
can select one or more items and click the button to remove the items. The
high-level tests might be:

� When the user clicks the delete checkbox next to the item and clicks
the “update cart” button, the page refreshes showing the item is no
longer in the cart.

� When the user clicks the delete checkboxes next to every item in the
cart and clicks the “update cart” button, the page refreshes showing
an empty cart. (This will generate questions—should the user be di-
rected to another page? Should a “keep shopping” button display?)

� When the user clicks the “update cart” button without checking an
item for delete, the page is refreshed and nothing is removed from
the cart.

Ask your customers to write down examples and high-level test cases before
the iteration. This can help them think through the stories more and help de-
fine their conditions of satisfaction. It also helps them identify which features
are critical, and which might be able to wait. It also helps to define when the
story is done and manage expectations among the team.

Figure 16-3 Story for deleting items from shopping cart

Story PA-3

As a shopper on our site, I want to delete items

out of my shopping cart, so I don’t purchase extra

items I don't want.

380 CHAPTER 16 � HIT THE GROUND RUNNING

Figure 16-4 shows a sample mock-up, where the product owner marked
changes on the existing page. Be careful about using an existing screenshot
from an old system, because you will run the risk of having a new system
look exactly like the old one even if that is not what you wanted.

Mock-ups are essential for stories involving the UI or a report. Ask your cus-
tomers to draw up their ideas about how the page should look. Share these
ideas with the team. One idea is to scan them in and upload them on the wiki
so everyone has access. Use those as a starting point and do more paper pro-
totypes, or draw them on the whiteboard. These can be photographed and
uploaded for remote team members to see.

TEST STRATEGIES

As you learn about the stories for the next iteration, think about how to ap-
proach testing them. Do they present any special automation challenge? Are
any new tools needed?

Recently, our company needed to replace the voice response unit hardware and
interactive voice interface software. A contractor was to provide the software to
operate the voice application, but it needed to interact via stored procedures
with the database.

Figure 16-4 Sample customer mock-up

Lisa’s Story

RESOURCES 381

This was a big departure from any software we’d worked on before, so it was
helpful to have an extra day to research how other teams have tested this type of
application before the first iteration planning that involved a story related to this
project. During the iteration planning session, we were able to write tasks that
were pertinent to the testing needed and give better estimates.

—Lisa

When your team embarks on a new type of software, you may decide to do a
development spike to see what you can learn about how to develop it. At the
same time, try a test spike to help make sure you’ll know how to drive the de-
velopment with tests and how to test the resulting software. If a major new
epic or feature is coming up, write some cards to research it and hold brain-
storming meetings an iteration or two in advance. That helps you know what
stories and tasks to plan when you actually start coding. One idea is to have a
“scout” team that looks at what technical solutions might work for upcom-
ing stories or themes.

PRIORITIZE DEFECTS

In our ideal world, we want zero defects at the end of each iteration and defi-
nitely at the end of the release. However, we recognize that we don’t live in an
ideal world. Sometimes we have legacy system defects to worry about, and
sometimes fixing a defect is just not high enough value for the business to fix.
What happens to these defects? We’ll talk about strategies in Chapter 18,
“Coding and Testing,” but for now, let’s just consider that we have defects to
deal with.

Before the next iteration is an ideal time to review outstanding issues with
the customer and triage the value of fixing versus leaving them in the system.
Those that are deemed necessary to be fixed should be scheduled into the
next iteration.

RESOURCES

Another thing to double-check before the iteration is whether your team has
all the resources you need to complete any high-risk stories. Do you need any
experts who are shared with other projects? For example, you may need a se-
curity expert if one of the stories poses a security risk or is for a security fea-
ture. If load testing will be done, you may need to have a special tool, or have
help from a load testing specialist from another team, or even a vendor who
provides load testing services. This is your last chance to plan ahead.

Chapter 9, “Tool-
kit for Business-
Facing Tests that
Support the
Team,” Chapter 10,
“Business-Facing
Tests that Critique
the Product,”
and Chapter 11,
“Critiquing the
Product Using
Technology-
Facing Tests,” pro-
vide examples of
tools for different
types of testing.

382 CHAPTER 16 � HIT THE GROUND RUNNING

SUMMARY

Your team may or may not need to do any preparation in advance of an iter-
ation. Because priorities change fast in agile development, you don’t want to
waste time planning stories that may be postponed. However, if you’re about
to implement some new technology, embark on a complex new theme, hope
to save time in iteration planning, or your team is divided into different loca-
tions, you might find some up-front planning and research to be productive.
As a tester, you can do the following:

� Help the customers achieve “advance clarity”—consensus on the
desired behavior of each story—by asking questions and getting
examples.

� Be proactive, learn about complex stories in advance of the iteration,
and make sure they’re sized correctly.

� You don’t always need advance preparation to be able to hit the
ground running in the next iteration. Don’t do any preparation that
doesn’t save time during the iteration or ensure more success at meet-
ing customer requirements.

� Coordinate between different locations and facilitate communication.
There are many tools to help with this.

� Obtain examples to help illustrate each story.
� Develop test strategies in advance of the next iteration for new and

unusual features.
� Triage and prioritize existing defects to determine whether any should

be scheduled for the next iteration.
� Determine whether any necessary testing resources not currently at

hand need to be lined up for the next iteration.

383

Chapter 17

ITERATION KICKOFF

Agile testers play an essential role during iteration planning, helping to plan
testing and development tasks. As the iteration gets under way, testers actively
collaborate with customers and developers, writing the high-level tests that help
guide development, eliciting and illustrating examples, making sure stories are
testable. Let’s take a closer look at the agile tester’s activities at the beginning of
each iteration.

ITERATION PLANNING

Most teams kick off their new iteration with a planning session. This might
be preceded by a retrospective, or “lessons learned” session, to look back to
see what worked well and what didn’t in the previous iteration. Although the
retrospective’s action items or “start, stop, continue” suggestions will affect
the iteration that’s about to start, we’ll talk about the retrospective as an end-
of-iteration activity in Chapter 19, “Wrap Up the Iteration.”

While planning the work for the iteration, the development team discusses one
story at a time, writing and estimating all of the tasks needed to implement

Iteration
Kickoff

Review with Customers

Review with Programmers

Test Cases as Documentation

High-Level
Tests and
Examples

Learning the Details

Considering All Viewpoints

Writing Task Cards

Deciding on Workload

Collaborate
with Customers

Iteration
Planning

Testable Stories

384 CHAPTER 17 � ITERATION KICKOFF

that story. If you’ve done some work ahead of time to prepare for the iteration,
this planning session will likely go fairly quickly.

Teams new to agile development often need a lot of time for their iteration
planning sessions. Iteration planning often took a whole day when Lisa’s
team first started out. Now they are done in two or three hours, which in-
cludes time for the retrospective. Lisa’s team uses a projector to display user
acceptance test cases and conditions of satisfaction from their wiki so that
everyone on the team can see them. They also project their online story
board tool, where they write the task cards. Another traditional component
of their planning meetings is a plate of treats that they take turns providing.
Figure 17-1 shows an iteration planning meeting in progress.

Learning the Details

Ideally, the product owner and/or other customer team members participate
in the iteration planning, answering questions and providing examples de-
scribing requirements of each story. If nobody from the business side can at-
tend, team members who work closely with the customers, such as analysts
and testers, can serve as proxies. They explain details and make decisions on
behalf of the customers, or take note of questions to get answered quickly. If

Figure 17-1 Iteration planning meeting

ITERATION PLANNING 385

your team went over stories with the customers in advance of the iteration,
you may think you don’t need them on hand during the iteration planning
session. However, we suggest that they be available just in case you do have
extra questions.

As we’ve emphasized throughout the book, use examples to help the team
understand each story, and turn these examples into tests that drive coding.
Address stories in priority order. If you haven’t previously gone over stories
with the customers, the product owner or other person representing the cus-
tomer team first reads each story to be planned. They explain the purpose of
the story, the value it will deliver, and give examples of how it will be used.
This might involve passing around examples or writing on a whiteboard. UI
and report stories may already have wire frames or mock-ups that the team
can study.

A practice that helps some teams is to write user acceptance tests for each
story together, during the iteration planning. Along with the product owner
and possibly other stakeholders, they write high-level tests that, when pass-
ing, will show that the story is done. This could also be done shortly in ad-
vance of iteration planning as part of the iteration “prep work.”

Stories should be sized so they’ll take no more than a few days to complete.
When we get small stories to test on a regular basis, we do not have them all
finished at once and stacked up at the end of the iteration waiting to be
tested. If a story has made it past release planning and pre-iteration discus-
sions and is still too large, this is the final chance to break it up into smaller
pieces. Even a small story can be complex. The team may go through an exer-
cise to identify the thin slices or critical path through the functionality. Use
examples to guide you, and find the most basic user scenarios.

Agile testers, along with other team members, are alert to “scope creep.” Don’t
be afraid to raise a red flag when a story seems to be growing in all directions.
Lisa’s team makes a conscious effort to point out “bling,” or “nice to have”
components, which aren’t central to the story’s functionality. Those can be
put off until last, or postponed, in case the story takes longer than planned to
finish.

Considering All Viewpoints

As a tester, you’ll try to put each story into the context of the larger system
and assess the potential of unanticipated impacts on other areas. As you did
in the release planning meeting, put yourself in the different mind-sets of

386 CHAPTER 17 � ITERATION KICKOFF

user, business stakeholder, programmer, technical writer, and everyone in-
volved in creating and using the functionality. Now you’re working at a de-
tailed level.

In the release planning chapter, we used this example story:

As a customer, I want to know how much my order will cost to ship
based on the shipping speed I choose, so I can change if I want to.

We decided to take a “thin slice” and change this story to assume there is only
one shipping speed. The other shipping speeds will be later stories. For this
story, we need to calculate shipping cost based on item weight and destina-
tion, and we decided to use BigExpressShipping’s API for the calculation.
Our story is now as shown in Figure 17-2.

The team starts discussing the story.

Tester: “Does this story apply for all items available on the site? Are any
items too heavy or otherwise disqualified for 5-day delivery?

Product Owner: “5-day ground is available for all our items. It’s the
overnight and 2-day that are restricted to less than 25 lbs.”

Tester: “What’s the goal here, from the business perspective? Making
it easy to figure the cost to speed up the checkout? Are you hoping to

Figure 17-2 Story shipping speed for 5-day delivery

Story PA-5

As a customer, I want to know how much my order

will cost to ship for standard 5-day delivery based

on weight and destination, so I can decide if

that’s the shipping option I want.

ITERATION PLANNING 387

encourage them to check the other shipping methods—are those more
profitable?”

Product Owner: “Ease of use is our main goal, we want the checkout
process to be quick, and we want the user to easily determine the total
cost of the order so they won’t be afraid to complete the purchase.”

Programmer: “We could have the 5-day shipping cost display as a de-
fault as soon as the user enters the shipping address. When we do the
stories for the other shipping options, we can put buttons to pop up
those costs quickly.”

Product Owner: “That’s what we want, get the costs up front. We’re go-
ing to market our site as the most customer friendly.”

Tester: “Is there any way the user can screw up? What will they do on
this page?”

Product Owner: “When we add the other shipping options, they can
opt to change their shipping option. But for now, it’s really straightfor-
ward. We already have validation to make sure their postal code matches
the city they enter for the shipping address.”

Tester: “What if they realize they messed up their shipping address?
Maybe they accidentally gave the billing address. How can they get back
to change the shipping address?”

Programmer: “We’ll put buttons to edit billing and shipping addresses,
so it will be very easy for the user to correct errors. We’ll show both ad-
dresses on this page where the shipping cost displays. We can extend this
later when we add the multiple shipping addresses option.”

Tester: “That would make the UI easy to use. I know when I shop on-
line, it bugs me to not be able to see the shipping cost until the order
confirmation. If the shipping is ridiculously expensive and I don’t want
to continue, I’ve already wasted time. We want to make sure users can’t
get stuck in the checkout process, get frustrated, and just give up. So, the
next page they’ll see is the order confirmation page. Is there any chance
the shipping cost could be different when the user gets to that page?”

Programmer: “No, the API that gives us the estimated cost should al-
ways match the actual cost, as long as the same items are still in the shop-
ping cart.”

Product Owner: “If they change quantities or delete any items, we need
to make sure the shipping cost is immediately changed to reflect that.”

388 CHAPTER 17 � ITERATION KICKOFF

As you can see by the conversation, a lot of clarification came to light. Every-
one on the team now has a common understanding of the story. It’s impor-
tant to talk about all aspects of the story. Writing user acceptance tests as a
group is a good way to make sure the development team understands the
customer requirements. Let’s continue monitoring this conversation.

Tester: “Let’s just write up some quick tests to make sure we get it right.”

Customer: “OK, how’s this example?

I can select two items with a 5-day shipping option and see my
costs immediately.

Tester: “Great start, but we won’t know where to ship it to at that point.
How about a more generic test like:

Verify the 5-day shipping cost displays as the default as soon as the
user enters a shipping address.

Customer: “That works for me.”

Considering All of the Facets
Paul Rogers recounts a situation during an iteration planning meeting, where
a performance issue came up for a story that appeared to be straightforward
and quick.

During our iteration meeting, one of the stories we were discussing was
for adding some new images to part of a web application. This discussion
ensued.

Product Owner: “I’d like to also get in the story for additional images.”

Developer 1: “OK, who has ideas on how long it will take?”

Developer 2: “It’s fairly quick, maybe half a day.”

Developer 3: “But what about the database changes?”

Developer 2: “I included those in the estimate.”

Developer 1: “OK, let’s go with half a day.”

Me: “Hang on. We looked at some performance issues last iteration.
If we add all those images, we will be taking a performance hit.

ITERATION PLANNING 389

Asking questions based on different viewpoints will help to clarify the story
and allow the team to do a better job.

Writing Task Cards

When your team has a good understanding of a story, you can start writing
and estimating task cards. Because agile development drives coding with
tests, we write both testing and development task cards at the same time.

If you have done any pre-planning, you may have some task cards already
written out. If not, write them during the iteration planning meeting. It
doesn’t matter who writes the task cards, but everyone on the team should
review them and get a chance to give their input. We recognize that tasks may
be added as we begin coding, but recognizing most of the tasks and estimat-
ing them during the meeting gives the team a good sense of what is involved.

When our team is ready to start writing task cards, programmers usually come up
with the coding task cards. The testers write testing task cards at the same time.

I usually start with a card to write high-level test cases. I ask the programmers
whether the story can be tested behind the GUI, and write testing task cards
accordingly. This usually means a test card to “Write FitNesse test cases” and a
developer task card to “Write FitNesse fixture,” unless the fixtures already exist.
Sometimes all of the behind-GUI tests can be covered more easily in unit tests, so
it is always good to ask whether this is the case.

We put anything the team needs to remember during the iteration on a task card.
“Show UI to Anne” or “Send test files to Joe” go up on the story board along with
all of the other tasks.

Developer 1: “OK, we should think about that some more. Maybe
there are other ways of implementing it.

Developer 2: “Why don’t we do a quick spike, add the mock images,
and run another performance test?”

It was really good that this discussion before even starting on a story
gave us some ideas of what problems we may encounter.

Anyone who’s uncertain about either the impact of a story on the rest of the
system or the difficulty of developing the functionality can, and should, raise
an issue during iteration planning. It’s better to address uncertainty early on
and then do more research or a spike to get more information.

Lisa’s Story

390 CHAPTER 17 � ITERATION KICKOFF

I estimate the testing task cards as I go, and ask the team for feedback on the
cards and the estimates. Sometimes we divide into groups, and each group takes
some stories and writes task cards for them. We always review all cards together,
along with the estimated time. If development time is relatively low compared to
testing time, or vice versa, that provokes a discussion. We reach a consensus as to
whether we think all aspects of the story have been covered with task cards. If
there are still some unknowns, we simply postpone writing the task cards until we
have the information.

The testing and development cards all go on the story board in the “to do” col-
umn. Anyone on the team can sign up for any card. Some testing task cards move
to the “work in progress” or “done” column before coding cards start to move, so
that programmers have some tests to guide their coding. As coding task cards are
moved to the “done” column, the cards for testing the “done” functionality are
moved into “work in progress.”

—Lisa

Janet uses an approach similar to this, but the programmer’s coding card
stays in the “To Test” column until the testing task has been completed. Both
cards move at the same time to the “Done” column.

Three test cards for Story PA-5 (Figure 17-2), displaying the shipping cost for 5-
day delivery based on weight and destination, that Lisa’s team might write are:

� Write FitNesse tests for calculating 5-day ship cost based on weight
and destination.

� Write WebTest tests for displaying the 5-day ship cost.
� Manually test displaying the 5-day delivery ship cost.

Some teams prefer to write testing tasks directly on the development task
cards. It’s a simple solution, because the task is obviously not “done” until the
testing is finished. You’re trying to avoid a “mini-waterfall” approach where
testing is done last, and the programmer feels she is done because she “sent
the story to QA.” See what approach works best for your team.

If the story heavily involves outside parties or shared resources, write task
cards to make sure those tasks aren’t forgotten, and make the estimates gen-
erous enough to allow for dependencies and events beyond the team’s con-
trol. Our hypothetical team working on the shipping cost story has to work
with the shipper’s cost calculation API.

ITERATION PLANNING 391

Tester: “Does anyone know who we work with at BigExpressShipping to
get specs on their API? What do we pass to them, just the weight and
postal code? Do we already have access for testing this?”

Scrum Master: “Joe at BigExpressShipping is our contact, and he’s al-
ready sent this document specifying input and output format. They still
need to authorize access from our test system, but that should be done in
a couple of days.”

Tester: “Oh good, we need that information to write test cases. We’ll
write a test card just to verify that we can access their API and get a ship-
ping cost back. But how do we know the cost is really correct?”

Scrum Master: “Joe has provided us with some test cases for weight and
postal code and expected cost, so we can send those inputs and check for
the correct output. We also have this spreadsheet showing rates for some
different postal codes.”

Tester: “We should allow lots of time for just making sure we’re access-
ing their API correctly. I’m going to put a high estimate on this card to
verify using the API for testing. Maybe the developer card for the inter-
face to the API should have a pretty conservative estimate, too.”

When writing programmer task cards, make sure that coding task estimates
include time for writing unit tests and for all necessary testing by program-
mers. A card for “end-to-end” testing helps make sure that programmers
working on different, independent tasks verify that all of the pieces work to-
gether. Testers should help make sure all necessary cards are written and that
they have reasonable estimates. You don’t want second-guess estimates, but if
the testing estimates are twice as high as the coding estimates, it might be
worth talking about.

Some teams keep testing tasks to a day’s work or less and don’t bother to
write estimated hours on the card. If a task card is still around after a day’s
work, the team talks about why that happened and writes new cards to go
forward. This might cut down on overhead and record-keeping, but if you
are entering tasks into your electronic system, it may not. Do what makes
sense for your team.

Estimating time for bug fixing is always tricky as well. If existing defects are
pulled in as stories, it is pretty simple. But what about the bugs that are
found as part of the iteration?

392 CHAPTER 17 � ITERATION KICKOFF

With new agile teams, I found that they always seem to end up with time spent on
bugs that wasn’t allotted as part of their estimates for the stories. Over time, pro-
grammers learn how much time they typically spend fixing bugs from a story, and
can just add half a day or a couple hours to their tasks for that purpose. Retesting
bug fixes adds time to tester’s estimates as well.

Until the team members get a handle on this, it may be appropriate to track the
time spent on fixing and testing bugs separately. My current team adds a story in
XPlanner with tasks for fixing and testing those bugs that didn’t get caught immedi-
ately. We are tracking the time so we can better estimate down the road.

—Janet

However your team chooses to estimate time spent for fixing defects during
the iteration, whether it is included in the story estimate or tracked sepa-
rately, make sure it is done consistently.

Another item to consider when estimating testing tasks is test data. The be-
ginning of an iteration is almost too late to think about the data you need to
test with. As we mentioned in Chapter 15, “Tester Activities in Release or
Theme Planning,” think about test data during release planning, and ask the
customers to help identify and obtain it. Certainly think about it as you prep
for the next iteration. When the iteration starts, whatever test data is missing
must be created or obtained, so don’t forget to allow for this in estimates.

We worked on a theme related to quarterly account statements for participants in
retirement plans. We were modifying a monthly job that takes a “snapshot” of
each participant’s account on the specified date. The snapshot relies on a huge
amount of data in the production database, including thousands of daily transac-
tions. We planned ahead.

For the first iteration, we did a few stories in the theme knowing we could only
test a few cases using some individual retirement plans for which we had data in
the test database. We also knew we needed a larger-scale test, with all of the re-
tirement plans in the database and at least an entire month’s worth of data. We
wrote a task card to copy enough production data to produce one monthly
“snapshot” and made sure the data was scrubbed to protect privacy.

Then we planned the full-blown test in the next iteration. This data enabled the
testers to find problems that were undetectable earlier when only partial data
was available. It was a nice balance of “just enough” data to do most of the cod-
ing and the full amount available in time to verify the complete functionality. Be-
cause the team planned ahead, the bugs were fixed in time for the critical release.

—Lisa

Janet’s Story

Lisa’s Story

TESTABLE STORIES 393

Deciding on Workload

We, as the technical team, control our own workload. As we write tasks for
each story and post them on our (real or virtual) story board, we add up the
estimated hours or visually check the number of cards. How much work can
we take on? In XP, we can’t exceed the number of story points we completed
in the last iteration. In Scrum, we commit to a set of stories based on the ac-
tual time we think we need to complete them.

Lisa’s current team has several years of experience in their agile process and
finds they sometimes waste time writing task cards for stories they may not
have time to do during the iteration. They start with enough stories to keep
everyone busy. As people start to free up, they pull in more stories and plan
the related tasks. They might have some stories ready “on deck” to bring in as
soon as they finish the initial ones. This sounds easy, but it is difficult to do
until you’ve learned enough to be more confident about story sizes and team
velocity, and know what your team can and cannot do in a given amount of
time and in specific circumstances.

Your job as tester is to make sure enough time is allocated to testing, and to
remind the team that testing and quality are the responsibility of the whole
team. When the team decides how many stories they can deliver in the itera-
tion, the question isn’t “How much coding can we finish?” but “How much
coding and testing can we complete?” There will be times when a story is easy
to code but the testing will be very time consuming. As a tester, it is impor-
tant that you only accept as many stories into the iteration as can be tested.

If you have to commit, commit conservatively. It’s always better to bring in
another story than to have to drop one. If you have high-risk stories that are
hard to estimate, or some tasks are unknown or need more research, write
task cards for an extra story or two and have them ready on the sidelines to
bring in mid-iteration.

As a team, we’re always going to do our best. We need to remember that no
story is done until it’s tested, so plan accordingly.

TESTABLE STORIES

When you are looking at stories, and the programmers start to think about
implementation, always think how you can test them. An example goes a
long way toward “testing the testability.” What impact will it have on my test-
ing? Part III, “The Agile Testing Quadrants,” gives a lot of examples of how to

394 CHAPTER 17 � ITERATION KICKOFF

design the application to enable effective testing. This is your last opportu-
nity to think about testability of a story before coding begins.

One team I worked with told me about issues they had in the previous release.
The team was rewriting the first step of a multistep process. What they didn’t an-
ticipate was that when the development on the new step started, the rest of the
process broke. No testing could be done on any other changes in that iteration
until the whole first step was finished.

Testability had not been considered when planning the story. In the next release,
when they decided to rewrite the second step, they learned from their previous
mistake. The programmers created an extra button on the page that allowed the
testers to either call the new page (in flux) or the old page to allow them test
other stories.

Remember to ask, “How can we test this?” if it is not obvious to you.

—Janet

During iteration planning, think about what kind of variations you will need
to test. That may drive other questions.

During one iteration planning meeting that I was in, the programmers started talk-
ing about implementation and drawing pictures on the whiteboard to show what
they were thinking.

I thought about it for a bit and asked the question, “Can it be done more simply?
The permutations and combinations for testing your proposed implementation
will make testing horrendous.”

The programmers thought about it for a couple of minutes and suggested an alter-
native that not only met the customer’s needs, but was simpler and easier to test.
It was a win-win combination for everyone.

—Janet

When testability is an issue, make it the team’s problem to solve. Teams that
start their planning by writing test task cards probably have an advantage
here, because as they think about their testing tasks, they’ll ask how the story
can be tested. Can any functionality be tested behind the GUI? Is it possible
to do the business-facing tests at the unit level? Every agile team should be
thinking test-first. As your team writes developer task cards for a story, think
about how to test the story and how to automate testing for it. If the pro-
grammers aren’t yet in the habit of coding TDD or automating unit tests, try

Janet’s Story

Janet’s Story

TESTABLE STORIES 395

writing a “XUnit” task card for each story. Write programming task cards for
any test automation fixtures that will be needed. Think about application
changes that could help with testing, such as runtime properties and APIs.

The application that I work on has many time- and date-dependent activities.
The programmers added a runtime server property to the web application to
set the server date. I can specify a date and time override, and when the server
starts up, it behaves accordingly. This allows kicking off monthly or quarterly pro-
cesses with a simple override. This property has helped in testing a wide variety
of stories.

Markus Gärtner [2008] told us his team has a similar property, a “DATE_OFFSET”
counted in “days to advance.” However, this was only used by the Java compo-
nents of the application where the business logic lives. The back-end systems in
C and C++ don’t use the date offset, which caused a problem.

—Lisa

If you have similar issues because other teams are developing parts of the sys-
tem, write a task card to discuss the problem with the other team and come
up with a coordinated solution. If working with the other team isn’t an op-
tion, budget time to brainstorm another solution. At the very least, be mind-
ful of the limitations, and adjust testing estimates accordingly and manage
the associated risk.

We started a project to replace our company’s interactive voice response (IVR)
system, which allows retirement plan participants to obtain account information
and manage accounts by phone. We contracted with another company to write
the system in Java, with the intention that our team would maintain it after a cer-
tain time period.

We spent some time brainstorming what testing would be needed and how to do
it. Presumably, the contractor would test things like the text-to-speech functional-
ity, but we had to supply stored procedures to retrieve appropriate data from the
database.

Our first step was to negotiate with the contractor to deliver small chunks of fea-
tures on an iteration basis, so they could be tested as the project progressed and
the work would be spread out evenly over the life of the contract. We decided to
test the stored procedures using FitNesse fixtures, and explored the options. We
settled on PL/SQL to access the stored procedures. A programmer was tasked
with getting up to speed on PL/SQL to tackle the test automation.

The team aimed for a step-by-step approach. By allocating plenty of time for tasks
at the start, we allowed for the steep learning curves involved.

Lisa’s Story

Lisa’s Story

396 CHAPTER 17 � ITERATION KICKOFF

Interestingly, the contractor delivered an initial build for the first iteration but was
not able to deliver the increments of code for the next few iterations. We ended
up canceling the contract and postponing the project until we could find a better
solution. By forcing the contractor to work in increments, we discovered right
away that it couldn’t deliver. What if we had let them take six months to write the
whole application? It probably wouldn’t have ended well. We put what we
learned to good use in researching a better approach.

—Lisa

When you’re embarking on something new to the team, such as a new tem-
plating framework or reporting library, remember to include it as a risk in
your test plan. Hopefully, your team considered the testability before choos-
ing a new framework or tool, and selected one that enhanced your ability to
test. Be generous with your testing task estimates with everything new, in-
cluding new domains, because there are lots of unknowns. Sometimes new
domain knowledge or new technology means a steep learning curve.

COLLABORATE WITH CUSTOMERS

Working closely with customers, or customer proxies such as functional ana-
lysts, is one of our most important activities as agile testers. As you kick off
the iteration, your customer collaboration will also kick into high gear. This
is the time to do all those good activities described in Chapter 8, “Business-
Facing Tests that Support the Team.” Ask the customers for examples, ask
open-ended questions about each story’s functionality and behavior, have
discussions around the whiteboard, and then turn those examples into tests
to drive coding.

Even if your product owner and/or other customers explained the stories be-
fore and during iteration planning, it’s sometimes helpful to go over them
briefly one more time as the iteration starts. Not everyone may have heard it
before, and the customer may have more information.

We start writing high-level acceptance tests the first day of the iteration. Because
we go over all stories with the product owner the day before the iteration and
write user acceptance tests as a team for the more complex stories, we have a
pretty good idea of what’s needed. However, the act of writing more test cases of-
ten brings up new questions. We go over the high-level tests and any questions we
have with the product owner, who has also been thinking more about the stories.

Lisa’s Story

HIGH-LEVEL TESTS AND EXAMPLES 397

One example of this was a story that involved a file of monetary distributions to
plan participants who withdraw money from their retirement accounts. This file is
sent to a partner who uses the information to cut checks to the participant. The
amounts in some of the records were not reconciling correctly in the partner’s sys-
tem, and the partner asked for a new column with an amount to allow them to do
a reconciliation.

After the iteration planning meeting, our product owner became concerned that
the new column wasn’t the right solution and brought up his misgivings in the story
review meeting. He and a tester studied the problem further and found that instead
of adding a new amount, a calculation needed to be changed. This was actually a
bigger story, but it addressed a core issue with the distributions. The team discussed
the larger story and wrote new task cards. It was worth taking a little time to discuss
the story further, because the initial understanding turned out to be wrong.

—Lisa

Good communication usually takes work. If you’re not taking enough op-
portunities to ask questions and review test cases, go ahead and schedule reg-
ular meetings to do so. If there’s not much to discuss, the meetings will go
quickly. Time in a meeting for an insightful discussion can save coding and
testing time later, because you’re more certain of the requirements.

HIGH-LEVEL TESTS AND EXAMPLES

We want “big picture” tests to help the programmers get started in the right
direction on a story. As usual, we recommend starting with examples and
turning them into tests. You’ll have to experiment to see how much detail is
appropriate at the acceptance test level before coding starts. Lisa’s team has
found that high-level tests drawn from examples are what they need to kick
off a story.

High-level tests should convey the main purpose behind the story. They may
include examples of both desired and undesired behavior. For our earlier
Story PA-5 (Figure 17-2) that asks to show the shipping cost for 5-day deliv-
ery based on the order’s weight and destination, our high-level tests might
include:

� Verify that the 5-day shipping cost displays as the default as soon as
the user enters a shipping address.

� Verify that the estimated shipping cost matches the shipping cost on
the final invoice.

398 CHAPTER 17 � ITERATION KICKOFF

� Verify that the user can click a button to change the shipping address,
and when this is done, the updated shipping cost displays.

� Verify that if the user deletes items from the cart or adds items to the
cart, the updated shipping option is displayed.

Don’t confine yourself to words on a wiki page when you write high-level
tests. For example, a test matrix such as the one shown in Figure 15-7 might
work better. Some people express tests graphically, using workflow drawings
and pictures. Brian Marick [2007] has a technique to draw graphical tests that
can be turned into Ruby test scripts. Model-driven development provides an-
other way to express high-level scope for a story. Use cases are another possi-
ble avenue for expressing desired behavior at the “big picture” level.

A Picture Is Worth a Thousand Words
The saying “A picture says a thousand words” can also be applied to test
cases and test validations.

Paul Rogers [2008] has been experimenting with some cool ideas around this
and explains his team’s approach to its problem in the following sidebar. Fig-
ure 17-3 shows the UI model he describes.

The application I work on is very graphical in its nature. It allows a user
to modify a web page by adding “photo enhancements” such as glasses,
hats, or speech bubbles to images, or by highlighting the text in the
web page with a highlighter pen effect.

There is a complex set of business rules as to what additions can be ap-
plied to images, how and where they are affixed, and how they can be
rotated. To explain the tests for these rules, it was much simpler to draw
a sketch of a typical web page with the different types of additions and
add small notes to each picture.

Text highlighting also posed many challenges. Most problematic were the
areas where text highlighting covered only part of an HTML tag. To de-
scribe what should be expected in many different situations, we created
different web pages and printed them out.

Using real pen highlighters, we highlighted the areas we expected to
show as highlighted after starting and ending in certain areas. This way,
we had an easy-to-read regression test.

Low-tech tools can take the mystery out of complex application design. Find
ways to express business rules as simply as possible, and share those with the
entire team.

See the bibliogra-
phy for links to
more information
on graphical tests
and model-driven
development.

HIGH-LEVEL TESTS AND EXAMPLES 399

Mock-ups can convey requirements for a UI or report quickly and clearly. If
an existing report needs modifying, take a screenshot of the report and use
highlighters, pen, pencil, or whatever tools are handy. If you want to capture
it electronically, try the Windows Paint program or other graphical tool to
draw the changes and post it on the wiki page that describes the report’s
requirements.

Distributed teams need high-level tests available electronically, while co-
located teams might work well from drawings on a whiteboard, or even from
having the customer sit with them and tell them the requirements as they
code.

What’s important as you begin the iteration is that you quickly learn the ba-
sic requirements for each story and express them in context in a way that
works for the whole team. Most agile teams we’ve talked to say their biggest

Figure 17-3 Sample of UI modeling technique

See the sample
mock-up of UI
changes in Chap-
ter 16, “Hit the
Ground Running.”

See Chapter 9,
“Toolkit for
Business-Facing
Tests that Support
the Team,” for
some ideas on
tools to gather
and communicate
requirements.

400 CHAPTER 17 � ITERATION KICKOFF

problem is to understand each story well enough to deliver exactly what the
customer wanted. They might produce code that’s technically bug-free but
doesn’t quite match the customer’s desired functionality. Or they may end up
doing a lot of rework on one story during the iteration as the customer clari-
fies requirements, and run out of time to complete another story as a result.

Put time and effort into experimenting with different ways to capture and
express the high-level tests in a way that fits your domain and environment.
Janet likes to say that a requirement is a combination of the story + conver-
sation + a user scenario or supporting picture if needed + a coaching test or
example.

Reviewing with Customers

Earlier in this chapter we talked about the importance of constant customer
collaboration. Reviewing high-level tests with customers is a good opportu-
nity for enforced collaboration and enhanced communication, especially for
a new agile team. After your team is in the habit of continually talking about
stories, requirements, and test cases, you might not need to sit down and go
over every test case.

If your team is contracting to develop software, requirements and test cases
might be formal deliverables that you have to present. Even if they aren’t, it’s
a good idea to provide the test cases in a format that the customers can easily
read on their own and understand.

Reviewing with Programmers

You can have all of the diagrams and wiki pages in the world, but if nobody
looks at them, they won’t help. Direct communication is always best. Sit down
with the programmers and go over the high-level tests and requirements. Go
over whiteboard diagrams or paper prototypes together. Figure 17-4 shows a
tester and a programmer discussing a diagram of thin slices or threads through
a user workflow. If you’re working with a team member in another location,
find a way to schedule a phone conversation. If team members have trouble
understanding the high-level tests and requirements, you’ll know to try a dif-
ferent approach next time.

Programmers with good domain knowledge may understand a story right
away and be able to start coding even before high-level tests are written. Even
so, it’s always a good idea to review the stories from the customer and tester
perspective with the programmers. Their understanding of the story might

See Chapter 8,
“Business-Facing
Tests that Support
the Team,” for
more about
what makes up
a requirement.

HIGH-LEVEL TESTS AND EXAMPLES 401

be different than yours, and it’s important to look at mismatches. Remember
the “Power of Three” rule and grab a customer if there are two opinions you
can’t reconcile. The test cases also help put the story in context with the rest
of the application. Programmers can use the tests to help them to code the
story correctly. This is the main reason you want to get this done as close to
the start of the iteration as you can—before programmers start to code.

Don’t forget to ask the programmers what they think you might have missed.
What are the high-risk areas of the code? Where do they think the testing
should be focused? Getting more technical perspective will help with design-
ing detailed test cases. If you’ve created a test matrix, you may want to review
the impacted areas again as well.

One beneficial side effect of reviewing the tests with the programmers is the
cross-learning that happens. You as a tester are exposed to what they are
thinking, and they learn some techniques for testing that they would not
have otherwise encountered. As programmers, they may get a better under-
standing of what high-level tests they hadn’t considered.

Figure 17-4 A whiteboard discussion

Chapter 2, “Ten
Principles for Ag-
ile Testers,” intro-
duces the “Power
of Three” rule.

402 CHAPTER 17 � ITERATION KICKOFF

Test Cases as Documentation

High-level test cases, along with the executable tests you’ll write during the
iteration, will form the core of your application’s documentation. Require-
ments will change during and after this iteration, so make sure your execut-
able test cases are easy to maintain. People unfamiliar with agile development
often have the misconception that there’s no documentation. In fact, agile
projects produce usable documentation that contains executable tests and
thus is always up to date.

The great advantage of having executable tests as part of your requirements
document is that it’s hard to argue with their results.

Frequently, product owners, plan administrators, or business development man-
agers will come and ask me a question such as, “What’s the system supposed to
do if someone submits a loan payment for zero dollars?” or “Why didn’t everyone
in this plan get a 3% nonelective contribution?”

Showing them a FitNesse test that replicates the scenario is much more powerful
than just showing them narrative requirements. Maybe the system wasn’t designed
the way it should have been, but the test illustrates how it actually works, because
we can clearly see the results of the inputs and operations. This has saved a lot of
arguments on the level of “I thought it worked this way.”

If they decide the functionality, as implemented, is incorrect, we can change the
expected outputs of the test and write a story to implement code to make the
test pass again with the new expectations. You can’t do that with a requirements
document.

—Lisa

Organizing the test cases and tests isn’t always straightforward. Many teams
document tests and requirements on a wiki. The downside to a wiki’s flexi-
bility is that you can end up with a jumble of hierarchies. You might have
trouble finding the particular requirement or example you need.

Lisa’s team periodically revisits its wiki documentation and FitNesse tests, and
refactors the way they’re organized. If you’re having trouble organizing your re-
quirements and test cases, budget some time to research new tools that might
help. Hiring a skilled technical writer is a good way to get your valuable test
cases and examples into a usable repository of easy-to-find information.

Lisa’s Story

Chapter 14, “An
Agile Test Automa-
tion Strategy,”
has more on test
management.

SUMMARY 403

SUMMARY

The iteration planning session sets the tone for the whole iteration. In this
chapter, we looked at what agile testers do to help kick off the iteration to a
good start.

� During iteration planning, testers help the team learn about the sto-
ries by asking questions and considering all viewpoints.

� Task cards need to be written along with development task cards and
estimated realistically.

� Another way of tackling testing tasks is to write them directly on the
developer task cards.

� Teams should commit to the work for which they can complete all of
the testing tasks, because no story is done until it’s fully tested.

� The start of an iteration is the last chance to ensure that the stories are
testable and that adequate test data is provided.

� Testers collaborate with customers to explore stories in detail and
write high-level test cases to let programmers kick off coding.

� Testers review high-level tests and requirements with programmers to
make sure they are communicating well.

� Tests form the core of the application’s documentation.

This page intentionally left blank

405

Chapter 18

CODING AND TESTING

Our agile tester has helped plan the release, size stories appropriately, and make
sure they’re testable. She, along with colleagues on the customer and develop-
ment team, has turned examples of desired behavior for each story into high-
level user acceptance tests. She and her team have lined up the resources and
infrastructure needed to deliver business value. Now, team members have picked
up task cards and started writing code. What do testers do next, especially before
any stories are ready to test?

Coding
and

Testing

Pair Testing

Show Me

Collaborate
with Programmers

Show Customers

Understand Business Needs

Talk to
Customers

Address the Testing Crunch

Anyone Can Do Testing Tasks

Completing
Testing Tasks

Iteration
Metrics

Measuring Progress

Defect Metrics

Keep the Build “Green”

Keep the Build Quick

Building a Regression Suite

Checking the “Big Picture”

Regression
Tests

Defect vs. Feature

Technical Debt

Zero Bug Tolerance

Dealing
with Bugs

Resources

Testers Facilitate Communication

Distributed Teams

Facilitate
Communication

Which Bugs to Log?

When to Fix Bugs?

What Media Do We Use to Log Bugs?

Alternatives & Suggestions

Start Simple

It’s All about
Choices

Start Simple

Add Complexity

Assess Risk

Testing and Coding Progress Together

Identify Variations

Power of Three

Focus on One Story

Driving
Development

Tests that Critique
the Product

406 CHAPTER 18 � CODING AND TESTING

DRIVING DEVELOPMENT

The beginning of coding is a good time to start writing detailed tests. The
high-level tests written before the iteration, or in the first couple days of it,
provide enough information for the programmers to start their own test-
driven development. So now we have a bit of breathing room, but if we don’t
move quickly, coding could get way ahead of testing and go off in the wrong
direction.

Now’s the time to start writing executable tests that illustrate the details
about a story in order to keep development moving forward smoothly and
help testing keep pace with coding. Like the high-level tests, we base detailed
tests on examples provided by the customers.

At this point, we’re mainly writing tests that will be automated, but we’re also
thinking ahead to the important exploratory testing we need to do as coding
is completed.

Start Simple

As testers, we’re easily distracted by interesting code smells and edge cases.
However, if we’re using tests to guide coding, we have to start with the basics.
Write the simplest happy path test you can in order to show that the core
functionality works.

Why executable tests? We’re working on an extremely tight schedule, and
neither the programmers nor the testers have time to stop and run manual
tests over and over. They do have time to click a button and run an auto-
mated test. That test needs to fail in a way that makes the cause as obvious as
possible. Ideally, we would give these tests to the programmers so that they
could execute them as they code. That is one reason why picking the right
automation framework is so important.

For some stories, automating the tests might take a long time. By keeping the
first test simple, you keep the focus on designing the automation solution.
When the simple test works, it’s worth putting time into more complex test
cases.

We stress the importance of automation, but Janet has worked with teams
that have successfully used manual tests in the form of checklists or spread-
sheets to give the programmers the information they need to start. However,
to be successful in the long run, these tests do need to be automated.

Chapter 14, “An
Agile Automation
Strategy,” gives
pointers for select-
ing the right tools.

DRIVING DEVELOPMENT 407

Add Complexity

As soon as the happy path test works, start adding more test cases. Add
boundary and edge conditions. The tests may show that the programmers
misunderstood a requirement, or they may show that a tester did, or maybe
the requirement’s true meaning eluded everyone. The important thing is that
everyone talks about it and gets on track.

As testers think of new scenarios to validate with executable tests, they also
think about potential scenarios for manual exploratory testing. Make a note
of these for later pursuit.

Remember the purpose of these tests. They should provide examples that tell
the programmers what code to write. As the code evolves, your tests can chal-
lenge it more, but resist the temptation to immediately follow smells into
edge cases. Get the basics working first. If you think of more cases based on
some risk analysis, you can always add extra tests later.

Assess Risk

Testers have used risk analysis to help prioritize testing for a long time, and
consideration for risk is already built into agile development. High-risk sto-
ries may get higher size estimates, and teams consider risk as they prioritize
stories during release and iteration planning.

Some quick risk analysis can help you decide what testing to do first and
where to focus your efforts. We never have time to test everything, and we
can use risk analysis to figure out how much testing is just enough.

If you have a really complex story, you may want to start by listing all of the
potential risks related to the story. These aren’t limited to functionality. Con-
sider security, performance, usability, and other “ilities.” Next, for each item,
rate the impact on the business if it were to occur, using a scale of 1 to 5 (or
whatever scale works for you): 1 being a low impact, 5 being a critical nega-
tive impact.

Now, consider the likelihood of each item occurring, using the same scale: 1
for not at all likely to happen, and 5 for items that probably will come up.
Multiply the two ratings together to get the total risk rating for each item.
This makes it easy to pick out the areas where your team should focus its test-
ing efforts first. Low-risk items can be left for last, or, because their impact is
low or they’re highly unlikely to occur, may not be addressed at all.

408 CHAPTER 18 � CODING AND TESTING

Your domain makes a huge difference here. If you’re testing software that runs
in heart pacemakers, you probably need to cover all risks with your testing no
matter how low or unlikely they are. If you’re testing an internal company web
application to be used by a few trained subject matter experts, you may be
able to skip over scenarios that are unlikely or have an obvious workaround.

Consider the story in Figure 18-1.

Figure 18-2 shows a possible risk assessment for this shipping cost story.

Item 8 is the highest-risk item, so we’d want to be sure to test changing ship-
ping addresses and verify the updated costs. We might want to automate an

Figure 18-1 Story on shipping speeds

Story PA-5

As a customer, I want to know how much my order

will cost to ship for based on the shipping speed

I select so that I can choose a different shipping

speed if I want to.

Figure 18-2 Sample risk assessment

Item Impact Probability Risk
1 Incorrect cost displayed 4 2 8
2 User can’t choose different shipping option 5 1 5
3 Item isn’t eligible for selected shipping option,

but selection allowed
3 2 6

4 Estimated cost doesn’t match actual cost at
checkout

3 4 12

5 Invalid postal code entered and not caught by
validation

4 1 4

6 User can’t understand shipping option rules 2 3 6
7 User can’t change shipping address 5 2 10
8 User changes shipping address, but cost doesn’t

change accordingly
5 4 20

DRIVING DEVELOPMENT 409

end-to-end test with this scenario. We’re not too worried about item 5;
maybe we have already tested our postal code validation and feel good about
it, so we don’t need to test it more. You may even have a very low-risk item
that you chose not to test.

History is usually a good teacher. Take note of past issues and make sure they
don’t happen again.

Coding and Testing Progress Together

At this point in the iteration, coding and testing continue hand in hand.
Testers, programmers, database experts, and other team members collabo-
rate to develop the stories, following the guidelines provided by examples
and tests. Different team members may contribute their particular expertise,
but all of them feel responsible for making sure each story is finished. All of
them learn about the story and learn from each other as work progresses.

Let’s look at how a team might work on the shipping cost story in Figure 18-1.
Patty Programmer picks up a task card to code the estimated shipping cost
calculations. She already understands the story pretty well from earlier dis-
cussions, but she may look at the wiki pages or back of the story card where
the testers wrote down some narrative describing the purpose of the story,
some examples of how it should work, and some high-level tests to make
sure she has a good idea of where to start. Tammy Tester sees that coding
work has begun and starts to write behind-the-GUI test cases for the cost
calculations.

The team had agreed during planning to start by calculating the 5-day ship-
ping cost based on the shipping address and item weight. Items can only be
shipped within continental North America, but that validation will be done
in the presentation layer, so the cost calculation tests can assume only valid
destinations are considered for input. They’re using a cost calculation API
provided by the shipping partner, and Tammy asks Patty where to find the al-
gorithms so she can figure the cost herself in order to write the tests. Tammy
writes the simplest test case she can think of in their behind-the-GUI test
tool. We show it as a simple table in Figure 18-3.

Figure 18-3 Simple happy path test

Weight Destination Postal Code Cost
5 lbs 80104 7.25

410 CHAPTER 18 � CODING AND TESTING

Patty hasn’t finished the code that would make this test pass yet, so Tammy
starts working on another testing task for the story, setting up the test envi-
ronment to work with the shipping partner’s test system.

Identify Variations

Because this story and the test are so straightforward, Patty and Tammy don’t
discuss the test design and tweak it as they might on more complex stories.
They also haven’t needed to ask the product owner more questions yet. Patty
calls Tammy over to show her that the simple test is now working. Tammy
writes up more test cases, trying different weights and destinations within
the United States. Those all work fine. She tries a Canadian postal code, and
the test gets an exception. She shows this to Patty, who realizes that the API
defaults to U.S. postal codes, and requires a country code for codes in Can-
ada and Mexico. She hadn’t written any unit tests yet for other countries.
They revise the test inputs, and Patty pairs with Paul Programmer to change
the code that calls the API. Now the test looks something like Figure 18-4.

This simple example illustrates the iterative back-and-forth between cod-
ing and testing. Different teams take different approaches. Patty and Tammy
might pair on both the coding and testing. Tammy might pair with Paul to
write the fixture to automate the test. Tammy might be in a remote office,
using an online collaboration tool to work with Patty. Patty might write the
executable story tests herself and then write the code to make them work,
practicing true story test-driven development. The point is that testing and
coding are part of one development process in which all team members
participate.

Tammy can continue to identify new test cases, including edge cases and
boundary conditions, until she feels all risk areas have been covered by the
minimum amount and variety of test cases. She might test with the heaviest
item available on the website sent to the most expensive destination. She
might test having a large quantity of the same item. Some edge cases may be
so unlikely that she doesn’t bother with them, or she decides to run a test but
after it passes doesn’t include it in the regression suite. Some tests might be
better done manually after a UI is available.

Figure 18-4 Revised happy path test

Weight Destination Postal Code Coutry Code Cost
5 lbs 80104 US 7.25
5 lbs T2J 2M7 CA 9.40

DRIVING DEVELOPMENT 411

Power of Three

Patty has written unit tests with Hawaii as the shipping destination, but
Tammy believes that only continental destinations are acceptable. Neither of
them is sure whether military post office box destinations are acceptable.
They go see Polly Product-Owner to ask what she thinks. They’re using the
Power of Three. When disagreements or questions arise, having three differ-
ent viewpoints is an effective way to make sure you get a good solution and
you won’t have to rehash the issue later. If one of the participants in the dis-
cussion isn’t familiar with the topic, the others will have to organize their
thoughts to explain it clearly, which is always helpful. Involving people in dif-
ferent roles helps make sure that changes to requirements don’t fly under the
radar and surprise team members later.

When unexpected problems arise, as they always do, the Power of Three rule
is a great place to start. You may need to pull in more people, or even the
whole team, depending on the severity or complexity of the issue. What if the
shipping partner’s API proves to be so slow that the response time on the
website will be unacceptable? Both the development team and the customer
team need to quickly explore alternative solutions.

Focus on One Story

Paul looks for a programming task to work on. Although the UI tasks for the
estimated shipping cost story are still in the “to do” column on the task
board, he’s more interested in the story to delete items out of the shopping
cart, so he picks up one of those cards. Nobody has time to start writing the
executable tests for that story, so he plunges ahead on his own.

Now the team has two stories going. They don’t really know how much time
it will take to finish either story. A much better approach would be for Paul to
start working on a UI task for the first story so that story can be finished
sooner. When a story’s done (meaning all of the code is written and tested),
you know exactly how much work is left to do on it: zero. If disaster struck
and no other stories got finished this iteration, there is at least one completed
story to release.

Completing the whole story isn’t a testing concept, but it’s one that testers should
promote and follow. If a programmer has started coding on a story, make sure
someone has also started working on testing tasks for that story. This is a bal-
ancing act. What if nobody has written even high-level tests for the delete items
story? Maybe that’s the highest testing priority? Usually, finishing a story
should be the goal before the team can move on to the next story.

412 CHAPTER 18 � CODING AND TESTING

Unless the team is very small, there is always more than one story in progress
at any given time. It might be more difficult, but try to focus on finishing one
story at a time. Patty is about to wrap up the shipping cost story, and Paul has
moved on to the delete items story. Patty runs into a snag, and she isn’t sure
how to solve it. Paul helps her to finish the code so that Tammy can finish her
exploratory testing and they can mark the story “done.” Now they have a bet-
ter idea of how much they have left to finish this iteration (or at least, how
much they don’t still have to work on).

Sometimes, several different stories can be done at the same time if a pro-
grammer and tester pair up to complete each story together. This works if the
stories are small and independent. What you don’t want to see is program-
mers starting coding without testing tasks being completed at the same time.

TESTS THAT CRITIQUE THE PRODUCT

As soon as testable chunks of code are available, and the automated tests that
guided their coding pass, take time to explore the functionality more deeply.
Try different scenarios and learn more about the code’s behavior. You should
have task cards for tests that critique the product, both business- and technology-
facing. The story’s not “done” until all of these types of tests are complete.

This becomes more important when all tasks except testing are complete for a
story. Now you should be able to test from one end of the story’s thread to the
other end, with all of the variations in between. Don’t put this testing off. You
may find requirements that were in the story but were missed with the tests that
drove development and are thus missing in the code. Now’s the time to write
those missing tests and code. Fill in all of the gaps and add more value while the
team is still focused on the story. Doing this later will cost much more.

Be aware that some of what you learn in testing the final story may be consid-
ered “nice to have,” perhaps making the functionality easier to use or faster,
items that weren’t part of the original story. Consult with your customer. If
there’s time to add it in the iteration, and the business can use the extra
value, go ahead. These additions are much cheaper to add now. But don’t
jeopardize other stories by spending too much time adding “bling” that
doesn’t have a big ROI.

If your exploratory testing leads the team and the customers to realize that
significant functionality wasn’t covered by the stories, write new stories for
future iterations. Keep a tight rein on “scope creep” or your team won’t have
time to deliver the value you planned originally.

Chapter 10,
“Business-Facing
Tests that Critique
the Product,” and
Chapter 11,
“Tecnology-Facing
Tests that Critique
the Product,” will
help you make
sure you cover all
of the necessary
tests that critique
the product.

COLLABORATE WITH PROGRAMMERS 413

Technology-facing tests to critique the product are often best done during
coding. This is the time to know if the design doesn’t scale, or if there are se-
curity holes.

COLLABORATE WITH PROGRAMMERS

Our vignette describing a team writing and using detailed tests to drive cod-
ing shows how closely testers and programmers collaborate. This continues
as coding and testing proceed. Working together enhances the team’s ability
to deliver the right product and provides many opportunities to transfer
skills. Programmers learn new ways of testing, and they’ll be better at testing
their own code as they write it. Testers learn more about the process of cod-
ing and how the right tests might make it easier.

Pair Testing

Paul Programmer has completed the user interface for the estimated ship-
ping options story, but he hasn’t checked it in yet. He asks Tammy to come sit
with him and demonstrates how the end user would enter the shipping ad-
dress during the checkout process. The estimated shipping cost displays right
away. Tammy changes the shipping address and sees the new cost appear. She
enters a postal code that doesn’t match the rest of the address and sees the
appropriate error message appear. The UI looks good to both of them, so
Paul checks in the code, and Tammy continues with her exploratory manual
testing of it.

Janet likes to have the programmer “drive” during these pair testing sessions
while she watches what happens. She finds that it is far more effective than
taking control of the keyboard and mouse while the programmer watches.

 “Show Me”

Tammy is especially concerned with changing the shipping address and having
the estimated cost recalculate, because they identified that as a risky area. She
finds that if she displays the estimated cost, goes ahead to the billing address
page, and then comes back to change the shipping address, the estimated costs
don’t change properly. She gets Paul to come observe this behavior. He realizes
there is a problem with session caching and goes back to fix it.

Showing someone a problem and working through it together is much more
effective than filing a bug in a defect tracking system and waiting for someone
to have time to look at it. It’s harder to do if the team isn’t co-located. If team

414 CHAPTER 18 � CODING AND TESTING

members are working in vastly different time zones, it’s even harder. Stick to
the most direct communication available to you. One of Lisa’s teammates is in
a time zone 121⁄2 hours ahead. He works late into his nighttime, and when
needed, he calls Lisa and they work through test results and examples together.

The simple act of showing the GUI to another person may help Paul realize
he’s implemented some erroneous behavior. Similarly, if Tammy is having
trouble getting her GUI test script to work, explaining the problem might be
enough for her to realize what’s causing it. If there is nobody available to look
at what you’ve just coded or help you debug a problem, it sometimes helps to
explain it out loud to yourself. “Rubber Ducking” and “Thinking Out Loud”
are surprisingly effective ways to solve your own problems. Janet likes to have
her own little rubber duck sitting on her desk to remind herself to think be-
fore she asks.

TALK TO CUSTOMERS

It’s shockingly easy for development team members to get their heads down
cranking out stories and forget to keep customers in the loop. In addition to
consulting business experts when we have questions, we need to show them
what we’ve delivered so far.

Hopefully, you were able to review test cases with customers, or with some-
one who could represent the customer, before coding began. If not, it’s never
too late. For situations where customers need to be more involved with the
details of the executable tests, be sure to find test tools that work for them as
well as for technical team members.

As we described in the last two chapters, you may have already gone over
mock-ups or paper prototypes with your customers. If tasks to mock up a re-
port or interface remain in the iteration plan, remember to keep the process
simple. For example, don’t code an HTML prototype when drawing on a
whiteboard will do just as well. We want to keep the process as simple as pos-
sible; simplicity is a core value.

Show Customers

As soon as a coded user interface or report is ready, even if it’s still rudimentary,
lacking all features or displaying hard-coded data, show it to the appropriate
customers. Nobody can explain exactly what they want ahead of time. They
need to see, feel, and use the application to know if it’s right. You may not be

The bibliography
contains refer-
ences for further
reading on this
subject.

COMPLETING TESTING TASKS 415

able to implement big changes mid-iteration, but if you start early, there may
be time for minor tweaks, and your customers will know what to expect.

The iteration review meeting is a great opportunity to show what the team
delivered and get feedback for the next iteration, but don’t wait until then to
get input from customers. Keep them involved throughout the iteration.

Understand the Business

Although we get caught up in the fast pace of iterations, we also need to stop
and take time to understand the business better. Spend some time talking to
business people about their jobs and what aspects might be enhanced with
new software features. The better you understand your customer’s business,
the better you can be at providing a good product.

My team budgets time for each development team member to sit with the retire-
ment plan administration team members as they do their daily work. Not only do
we understand those jobs better, but we often identify small changes in the appli-
cation that will make the administrator’s work easier.

Simple additions such as a bit of extra data provided, an additional search filter, or
changing the order of a display can make a big difference to a tedious and de-
tailed process. We also document what we learn with flow charts and wiki pages
so that other team members can benefit.

—Lisa

Some teams actually sit with the business people permanently so that they
are involved with the actual business on a daily basis.

COMPLETING TESTING TASKS

Agile testers are proactive. We don’t sit and wait for work to come to us.
Testers who are accustomed to a waterfall process may feel there’s nothing to
do until a story is 100% complete. That’s rarely true during an agile iteration.
Work with programmers so that they produce some testable piece of code
early on. The shipping cost algorithm presented earlier is a good example. It
can be tested completely in isolation, without needing to access the database
or the user interface. Alternatively, the user interface could be stubbed out
with hard-coded data before the services accessing the real data are complete,
and the behavior of the presentation layer can be tested by itself.

Lisa’s Story

416 CHAPTER 18 � CODING AND TESTING

The programmers on Lisa’s team regularly automate behind-the-GUI tests in
addition to unit and integration tests. They also often write the functional
behind-the-GUI test cases. Sometimes they write the initial happy path execut-
able test so they can coordinate test and code design; then a tester adds more
test cases. Occasionally, they write all of the functional test cases, because the
testers don’t have the bandwidth to cover all of the test-intensive stories.

Everyone on the team also must be willing to take on manual testing tasks. If
your team is just starting and hasn’t been able to address automation needs
yet, the whole team should plan time to execute manual regression test
scripts as well as manually testing new features. As Lisa’s team can attest, this
task provides great motivation for learning how to design the application to
facilitate test automation. Other teams tell us this worked for them as well.

DEALING WITH BUGS

We’ve known many teams that struggle with the question of how to track
bugs, or whether to track them at all. As Tom and Mary Poppendieck write in
their book Implementing Lean Software Development: From Concept to Cash
[2006], defect queues are queues of rework and thus collection points for

Peril: The Testing Crunch
Even experienced agile teams often experience a testing crunch at the end of
an iteration. Maybe a story or two turned out to take much longer than ex-
pected, or a production problem took time away from development. What
happens when tomorrow is the end of your iteration and your task board
(real or virtual) is still full of testing cards?

If you see this, recognize it as a bad smell. Work with the team to determine
what the problem may be. Are the programmers not working closely enough
with the testers? Were there too many interruptions?

The way to address this peril is to involve the whole team. Remember that
anyone on the team can sign up for testing tasks. In your daily stand-up, you
can evaluate whether the team is on track to finish all of the stories. If multiple
stories are in danger of not being completed, choose a story to drop, or re-
duce the scope on one or more stories. Focus on completing one story at a
time. As the end of the iteration approaches, programmers may have to stop
working on new features and start picking up testing tasks instead. Missing
some functionality from a release is better than missing the entire release be-
cause testing couldn’t be completed on all or most stories.

DEALING WITH BUGS 417

waste. Some teams simply fix bugs as soon as they’re discovered. They write a
unit test to reproduce the bug, fix the code so the test passes, check in the test
and the bug fix, and go on. If someone breaks that piece of code later, the test
will catch the regression.

Other teams find value in documenting problems and fixes in a defect track-
ing system (DTS), especially problems that weren’t caught until after code
was released. They may even look for patterns in the bugs that got to produc-
tion and do root cause analysis to learn how to prevent similar issues from
recurring. Still, defect systems don’t provide a good forum for face-to-face
communication about how to produce higher-quality code.

Lisa and her fellow testers prefer to talk to a programmer as soon as a prob-
lem is found. If the programmer can fix it immediately, there’s no need to log
the bug anywhere. If no programmer is available immediately to work on the
problem, and there’s a possibility the bug might be forgotten, they write a
card for it or enter it into their DTS.

We’ve added this section to this chapter because this is when you run into the
problem. You have been writing tests first, but are finding problems as you
work with the programmer. Do you log a bug? If so, how? You’ve been doing
your exploratory testing and found a bug from a story that was marked done.
Do you log a bug for that? Let’s discuss more about defects and consider op-
tions that are open to you and your team.

Is It a Defect or Is It a Feature?

First, let’s talk about defects versus features. The age-old question in software
development is, “What is a bug”? Some answers we’ve heard are: It’s a devia-
tion from the requirements or it’s behavior that is not what was expected. Of
course, there are some really obvious defects such as incorrect output or in-
correct error messages. But what really matters is the user’s perception of the
quality of the product. If the customer says it is a defect, then it is a defect.

In agile, we have the opportunity to work with customers to get things fixed
to their satisfaction. Customers don’t have to try to think of every possible
feature and detail up front. It is okay for them to change their minds when
they see something.

In the end, does it really matter if it is a bug or a feature if it needs to be fixed?
The customer chooses priorities and the value proposition. If software quality

Chapter 5, “Transi-
tioning Typical
Processes,” talks
about why your
team may or may
not want to use a
Defect Tracking
System.

418 CHAPTER 18 � CODING AND TESTING

is a higher priority for the customer than getting all of the new features, then
we should try to fix all defects as we find them.

Customers on the team use their knowledge to give the best advice they can
to the team on day-to-day development. However, when a product goes to
UAT and is exposed to a larger customer base, there will always be requests in
the form of bugs or new enhancements.

Technical Debt

One way of thinking about defects is as technical debt. The longer a defect
stays in the system and goes undetected, the greater the impact. It also is true
that leaving bugs festering in a code base has a negative effect on code quality,
system intuitiveness, system flexibility, team morale, and velocity. Fixing one
defect in buggy code may reveal more, so maintenance tasks take longer.

Zero Bug Tolerance

Janet encourages teams that she works with to strive for “zero tolerance” to-
ward bug counts. New agile teams usually have a hard time believing it can
be done. In one organization Janet was working with, she challenged each of
the five project teams to see how close they could come to zero bugs out-
standing at the end of each iteration, and zero at release time.

Zero Bug Iterations
Jakub Oleszkiewicz, the QA manager at NT Services [2008], recounts how his
team learned how to finish each iteration with no bugs carried over to the
next one.

I think it really comes down to exceptional communication between the
testers, the developers, and the business analysts. Discipline was also
key, because we set a goal to close off iterations with fully developed,
functional, deployable, and defect-free features while striving to avoid
falling into a waterfall trap. To us, avoiding waterfall meant we had to
maintain alignment with code and test activities; we tried to plan an it-
eration's activities so that a given feature's test cases were designed and
automated at the same time as that feature's code was written. We
quickly found that we were practicing a form of test-driven develop-
ment. I don't think it was pure TDD, because we weren't actually exe-
cuting the tests until code was checked in, but we were developing
the tests as developers wrote code, and developers were asking us
how our tests were structured and what our expected results were.

Chapter 6, “The
Purpose of Test-
ing,” explains how
tests help manage
technical debt.

IT’S ALL ABOUT CHOICES 419

As part of any development, you will always need to make trade-offs. Your
team may decide to release with some outstanding bugs because it is deemed
more important to get new functionality out the door than to fix low-level
bugs.

IT’S ALL ABOUT CHOICES

Teams have solved the problem of how to handle defects in many different
ways. Some teams put all of their bugs on task cards. Other teams have cho-
sen to write a card, estimate it, and schedule it as a story. Still others suggest
adding a test for every bug—that way you don’t have to record the defect, just
the test.

Is there one right way? Of course not! But, how do you know what is right for
your team? We have some suggestions to help you choose and decide what is
right for you. Think about your team and your product and what might
work in your situation. First, we’ll talk about what defects we should log,
then we’ll talk a bit about when you should fix them, and finally we’ll look at
what media to choose. The right combination will depend on how far along
your team is in its agile journey and how mature your product is.

Conversely, we regularly asked the developers how they were imple-
menting a given feature. This kind of two-way questioning often elevated
inconsistencies in how requirements were interpreted and ultimately
highlighted defects in our interpretations before code was actually
committed.

Every morning during our Scrum, we further ensured parity between the
functional groups within the team through simple dialogue. Communica-
tion was ridiculously good—we sat close to each other, often even at
the same computer. When a defect was discovered, the developer was
right there observing, taking notes, and talking through the require-
ments. A business analyst was always nearby to further validate our
thinking. Often within minutes a resolution was checked-in, deployed to
the test environment, and verified.

Both developers and testers had to be committed to this approach or it
wouldn't have worked. Without discipline, the developers could have
easily moved forward onto more features and let the bugs slide until the
end of the project, risking an incomplete iteration. If we were not co-
located as we were, communication would have suffered; likely a bug
tracking system or email would have become our primary means of com-
municating defects, resulting in longer turn-around times and an in-
creased probability of rework.

420 CHAPTER 18 � CODING AND TESTING

Decide Which Bugs to Log

Not all bugs need to be logged, but teams often struggle with which ones
should be recorded and which ones don’t need to be. We recommend that
you avoid creating a defect report if possible. Have a conversation with a real
person first, and only produce a defect report if it is truly a real problem that
demands a change to the product or the programmers just can’t get to it right
away.

Unit Test Failures

Don’t log unit test failures. If you are part of a team that is practicing TDD
(test-driven development) and has good coverage with its unit tests, you
know that failed tests during the build should not be logged. A failed test
during the continuous integration build is a signal for the programmers to
address the problem right away. Logging these bugs would be redundant and
a waste of time.

Failures in Higher-Level Regression Tests

Many teams have builds that run regression tests above the unit level, such as
tests behind the GUI and tests through the GUI. When one of these builds
fails, should you log the bug in a DTS?

We have two builds, an “ongoing build” that runs only unit tests, and a “full build”
that runs the functional tests behind and through the GUI. When the “full build”
breaks, if a developer investigates and tackles the problem right away as some-
times happens, usually no bug is logged. The problem is fixed quickly. At other
times, the failure is not straightforward. One of the testers investigates, narrows
down the problem, and files a bug that either states the name of the failing test or
provides manual steps to recreate the problem.

In either case, tests are written that reproduce the bug, and the code is fixed to
make the tests pass. The tests become part of one of the builds.

—Lisa

Failing tests in themselves are a type of recorded bug. But sometimes, as in
Lisa’s case, more information needs to be added to allow for an effective and
clean fix, so logging the defect is warranted.

Story Bugs within the Current Iteration

Don’t log bugs that can be fixed immediately, especially if you would other-
wise record them in an electronic DTS. If your team is working closely with

Lisa’s Story

IT’S ALL ABOUT CHOICES 421

the programmers and is practicing pair testing as soon as a story is com-
pleted, we strongly recommend that you don’t log those bugs as long as the
programmer addresses them right away. As you notice issues, talk them over
with the programmer and decide whether they are real issues or not. Talk to
the customer if you need to, but make a couple of notes so you remember
what you saw so you can adjust your tests if needed.

If you are using index cards to log bugs, you may want to put an index card
up on the task board (or a card on your electronic board) just as a reminder.

Post-Iteration Bugs (Or Those that Can’t Be Fixed Immediately)

Do log bugs that can’t be fixed right away. We stress testing early in order to
catch as many bugs as possible while the programmers are still working on
the story. We know it is cheaper to fix them when caught early; however,
sometimes we just don’t catch them right away. The programmer has moved
on to another story and can’t drop everything to fix it now. Those are the
ones that are good candidates for logging. Sometimes a “bug” is really a
missed requirement and needs to be handled as a story—estimated and pri-
oritized for a future iteration.

From the Legacy System

Do log bugs that occur in the legacy system. If your product has been around
a long time, it likely has a number of bugs that have been lurking in the back-
ground just waiting to be discovered. When you find them, you have a couple
of choices. If your product owner thinks it is worthwhile to fix them, then log
the bugs and they can be prioritized as part of the product backlog. However,
if they have been around a long time and cause no issues, your product
owner may decide it is not worth fixing them. In this case, don’t bother log-
ging them. They will never get addressed anyhow, so don’t waste your time.

Found in Production

Do log all production bugs. When your application is in production, all bugs
found by the customer should be logged. Depending on their severity, these
bugs may be fixed immediately, at the time of the next release, or they’ll be
estimated, prioritized, and put in your product backlog.

Choose When to Fix Your Bugs

There are three options. All bugs you find need to be triaged to determine if
you fix them now, fix them later, or don’t fix them at all. This triage may be as
simple as a discussion with the programmer to determine if they are really

422 CHAPTER 18 � CODING AND TESTING

bugs in the story he is working on. The triage may be a discussion with the
product owner to determine if there should be another story for the next it-
eration. The triage may also be a formal process with the customers to prior-
itize which bugs to fix.

Fix Now

The more bugs you can fix immediately, the less technical debt your applica-
tion generates and the less “defect” inventory you have. Defects are also
cheaper to fix the sooner they are discovered. In an article in iSixSigma Mag-
azine, Mukesh Soni [2008] quotes a report from IBM that the cost to fix an
error found after product release was four to five times as much as one un-
covered during design, and up to 100 times more than one identified in the
maintenance phase (see Figure 18-5).

Figure 18-5 shows a statistic based on phased methodology, but the statistic
still holds true for agile development. It is cheaper to fix bugs that are found
during development than after.

If a defect is found while developing a new feature, or is a side effect from an-
other bug fix, it should be automatically fixed. But, as usual, this is to be ap-
plied with prudence. For example, if a bug is found that the programmers say
will be difficult to fix and may destabilize the product, it should be taken to
the customers to prioritize.

Phase/Stage of the S/W Development in which the Defect is Found

120

100

80

60

40

20

0

ImplementationDesign Testing Maintenance

1x 6.5x
15x

100x

Figure 18-5 Relative costs to fix software defects (Source: IBM Systems
Sciences Institute)

IT’S ALL ABOUT CHOICES 423

If you fix the bugs during development, you lessen the presence of bugs later
in the process. Your team velocity can include time to fix bugs. Over time,
your team members will get a good idea of how long they spend on fixing
bugs found by the testers for a story. Hopefully, there are few. If your team is
a new agile team, there may be quite a few bugs that escape development, but
as the team gets more comfortable with the tools and the processes, the num-
ber of bugs found will lessen. To start, try making the estimate for a story to
include two hours or half a day for fixing associated bugs.

Fix Later

Different teams have different ways of handling defects. Some teams believe
that all defects found should be prioritized by the customers before they get
put on the list to fix. They believe it is completely up to the customer to deter-
mine whether they really are defects, and if so, whether they should be fixed.

Never Fix

Your team has recognized a defect, but know it won’t get fixed. Perhaps that
section of code needs a complete rewrite later because the functionality will
change, or perhaps it is just such a low-priority issue or so obscure that your
customers may never find it. There are a multitude of reasons why it won’t get
fixed. If your triage determines this is the case, we suggest you just close the
bug. Don’t keep it open pretending that you will fix it someday.

Choose the Media You Should Use to Log a Bug

When we talk about media, we mean the variety of ways you can log a bug. It
could be a defect tracking system or index cards, or maybe you choose to
have no physical record at all.

Index Cards

Index cards (whether real or virtual cards in an online planning and tracking
system) don’t leave a lot of room for a lot of clerical details, but they do give
great visibility to outstanding issues when they are pinned on the story board,
especially if they are in another color. Some teams use screen prints and staple
them to the back of the card or write the details in a text file, or even record
steps in audio form on a hand-held voice recorder.

There are lots of options, but we would suggest that you pick one that contains
enough information to guide someone to reproduce a problem or to focus a
discussion when the programmer is ready to fix it. The card is tangible. Five
hundred bugs in a DTS are just a number. A stack of 500 cards is impressive.

424 CHAPTER 18 � CODING AND TESTING

Use cards in the following circumstances:

� You are a disciplined agile team and are fixing all bugs within an
iteration.

� You want to make bugs visible to the team.

There is nothing stopping you from having both index cards and a DTS.

Defect Tracking System

Use a DTS in the following circumstances:

� Your team is distributed.
� You need to track bugs for audit purposes or to capture them in re-

lease notes.
� You have bugs that escape an iteration and you need to remember to

fix them later.
� You have a legacy system with a large number of defects.

One way or the other, you will likely want to have some kind of DTS to log
some of the bugs. This does not mean you need to log them all. Be smart
about which ones you do log.

None at All

Why wouldn’t you log a bug? Most teams that we have worked with have set
rules for themselves that no bug is fixed without a unit test. If you also have a
functional automation suite, then you can catch the larger bugs with those.
The argument is that if there is a test that will catch the bug, you have no
need to log the bug. Anything learned from fixing the bug was captured in
the test and the code. However, you need to recognize that not all tests are
easy to automate.

Use tests to capture bugs in the following circumstance:

� Your team is disciplined and writes tests for every bug found.

Alternatives and Suggestions for Dealing with Bugs

As teams mature, they find procedures that work for them. They eliminate
redundant tasks. They become more practiced at using story cards, story

IT’S ALL ABOUT CHOICES 425

boards, and project backlogs. They use tests effectively, and learn which bugs
to log and what metrics make sense to their team. In this section, we’ll share
some ideas that other teams have found work for them.

Set Rules

Set rules like, “The number of pink cards (bugs) should never get higher than
ten at any one time.” Revisit these each time you have a team retrospective. If
your defect rate is going down, no worries. If the trend is the opposite, spend
time analyzing the root cause of bugs and create new rules to mitigate those.

Fix All Bugs

Don’t forget to fix low-priority bugs found during the iteration as well, be-
cause they have an effect on future development. In our experience, there
seems to be a strong correlation between “low priority” and “quick to fix,” al-
though we don’t have hard facts to support that. We suggest stopping small,
isolated bugs before they become large, tangled bugs.

Combine Bugs

If you find a lot of bugs in one area, think about combining them into an en-
hancement or story.

When I first started working at WestJet, I found a lot of small issues with the mobile
application. The application worked correctly, but I was confused about the flow.
I only found these issues because I was new and had no previous perceptions.

The team decided to group the issues I had raised and look at the whole issue as
a new story. After studying the full problem with all of the known details, the final
outcome was a solid feature. If the bugs had been fixed piecemeal, the effect
would not have been so pretty.

—Janet

Treat It as a Story

If a “bug” is really missed functionality, choose to write a card for the bug
and schedule it as a story. These stories are estimated and prioritized just like
any other story. Be aware that bug stories may not receive as much attention
as the new user stories in the product backlog. It also takes time to create the
story, prioritize, and schedule it.

Janet’s Story

426 CHAPTER 18 � CODING AND TESTING

The Hidden Backlog
Antony Marcano, author of www.TestingReflections.com, points out that
while user stories and their acceptance tests describe desired behavior, de-
fect reports describe misbehavior. Behind each misbehavior is a desired be-
havior, often not previously defined. Thus, behind every defect report may be
a hidden user story. He explains his experiences.

In Chapter 5, “Transitioning Typical Processes,” we mentioned Antony Marcano’s
blog post about defect tracking systems being a hidden backlog in agile teams.
Antony shares his ideas about how to bring that secret out into the open.

XP publications suggest that if you find a bug you should write an auto-
mated test reproducing it. Many teams file a bug report and then write a
separate automated test. I’ve found that this results in duplication of ef-
fort—and therefore waste. When we write a bug report, we state the
steps, what should have happened (expectation), and what actually
happened (anti-expectation). An automated test tells you the same
things—steps, expectation, and running it for the first time should dem-
onstrate the anti-expectation. When you are able to write an automated
acceptance test as easily as you write a bug-report and the test commu-
nicates as much as the bug report does and your backlogs and story
boards allow you to manage the work involved in fixing it, then why
write a separate bug report?

Bug metrics are all that remain. Bug metrics are traditionally used to help
predict when software would be ready for release or highlight whether
quality is improving or worsening. In test-first approaches, rather than
telling us if quality is improving or worsening, it tells us how good we
were at predicting tests—that is, how big the gaps were in our original
thinking. This is useful information for retrospectives and can be
achieved simply by tagging each test with details of when it was identi-
fied—story elaboration, post-implementation exploration, or in produc-
tion. As for predicting when we will be able to release—when we are
completing software of “releasable quality” every iteration—this job is
handled by burn-down/burn-up charts and the like.

With one new project I was working on, I suggested that we start using a
bug-tracking system when the need for one was compelling. We cap-
tured the output of exploratory testing performed inside the iteration as
automated tests rather than bug reports. We determined whether the
test belonged to the current story, another story, or whether these tests
inspired new stories. We managed these stories as we would any other
story and used burn-down charts to predict how much scope would be
done by the end of the iteration. We never even set up a bug-tracking
system in the end.

There is a difference between typical user stories and bug-inspired user
stories, however. Previously our stories and tests only dealt with missing
behaviors (i.e., features we know we want to implement in the future).

IT’S ALL ABOUT CHOICES 427

Blue, Green, and Red Stickers

Each team needs to determine the process that works for it, and how to make
that process easily visible. The following story is about one process that worked
for Janet.

A few years ago, I worked on a legacy system with lots of bugs already logged
against the system before agile was introduced. One of the developers was
adamant that he would not use a defect-tracking system. He firmly believed they

Now, they also started to represent misbehaviors. We found it useful to in-
clude summary information about the misbehavior in our proposed user
story to help the customer prioritize it better. For example:

As a registered user, I want to be prevented from accessing the
system if my password is entered using the incorrect case, so
that I can feel safer that no one else can guess my password,
rather than being allowed to access the system.

The “rather than” was understood by the customer to mean "that's
something that happens currently"— which is a misbehavior rather than
merely a yet-to-be-implemented behavior.

Using this test-only approach to capturing bugs, I’ve noticed that bug-
inspired stories are prioritized more as equals to the new-feature user
stories, whereas before they often gave more attention to the “cool new
features” in the product backlog than the misbehaviors described in the
bug tracking. That's when I realized that bug-tracking systems are essen-
tially hidden, or secret backlogs.

On some teams, however, the opposite is true. Fix-all-bugs policies can
give more attention to bugs at the expense of perhaps more important
new features in the main backlog.

Now, if I'm coaching a team mid-project, I help them to find better and
faster ways of writing automated tests. I help them use those improve-
ments in writing bug-derived automated tests. I help them find the ap-
propriate story—new or existing—and help them harness the aggregate
information useful to retrospectives. Eventually, they come to the same
realization that I did: Traditional bug tracking starts to feel wasteful and
redundant. That's when they decide that they no longer want or need a
hidden backlog.

If bugs are simply logged in a DTS, important information might be effectively
lost from the project. When we write acceptance tests to drive development,
we tend to focus on desired behavior. Learning about undesired behavior
from a defect, and turning that into stories is a vital addition to producing the
right functionality.

Janet’s Story

428 CHAPTER 18 � CODING AND TESTING

were a waste of time. However, the testers needed the defects logged because
there were so many.

The team worked out a compromise that worked for everyone. Bugs that were
found during pair testing with the programmers were not recorded, because they
were fixed right away. All others were logged in the DTS. Bugs that needed to be
fixed in the current iteration were recorded on pink cards with the summary and
bug number and then put on the story board. All others became part of the prod-
uct backlog.

The programmers could look at details in the system but also asked testers for
more information, if required. Because the issues were on the story board, they
became part of the daily stand-ups and discussions. When a bug was fixed, the
programmers wrote the fix and any extra information on the back of the card.
They put a blue sticker on the card so the testers knew it was ready for testing. A
green sticker meant it had been verified as fixed, and a red sticker meant it wasn’t
fixed and needed more work. Of course, there were lots of conversations be-
tween the testers and the programmers. James, one of the programmers, and I
had a lot of fun with one bug that just wouldn’t stay fixed. By the end, the card
looked like it had a caterpillar on it—blue, red, blue, red, blue, and finally green.
We were all quite excited when that bug was squashed.

The testers closed bugs and did most of the administration, because the DTS was
their requirement. After a while, the programmers started entering what they fixed
into the defect-tracking system because it was easier than writing on the card. The
team still continued to use the cards because of the visibility. It was easy to see at a
glance how many outstanding bugs there were in the iteration or on the backlog.

—Janet

This approach worked for this team because there was a lot of discipline in
the team, and most new bugs were fixed in the iteration if they were part of
the new or changed functionality. The only bugs that went into the backlog
were legacy bugs that were deemed low risk.

Start Simple

We suggest using as simple a system as possible and applying complexity as
required. Code produced test-first is, in our experience, fairly free of bugs
by the time it’s checked in. If you’re finding a lot of bugs in new code, your
team needs to figure out why, and take action. Try to shorten the cycle of
coding, integrating and testing so that programmers get immediate feed-
back about code quality. Perhaps some buggy section of legacy code needs
to be redesigned before it mires your team in technical debt. Maybe you
need to work more closely with the business experts to understand the de-
sired functionality.

FACILITATE COMMUNICATION 429

Another idea might be to create an ongoing “start, stop, continue” list so that
you can remember some of the issues during the iteration retrospective.

FACILITATE COMMUNICATION

The daily stand-up helps teams maintain the close communication they
need. Everyone on the team learns the current status of tasks and stories, and
can help each other with obstacles. Often, hearing programmers describe
tasks they’re working on provides a clue that they may have misunderstood
the customer’s requirements. That signals the need for a group discussion af-
ter the stand-up. If a tester needs help with a testing issue that’s come up, she
might ask the team to stay after the stand-up to talk about it. Missed tasks are
often identified during stand-ups, and new cards can be written on the spot.

The stand-up is a good time to look at progress. Use big, visible charts such
as story boards, burndown charts, and other visual cues to help keep focus
and know your status. If the end of the iteration is drawing near, and coding
on a story seems “stuck,” raise a red flag and ask the team what can be done
about it. Perhaps some pairing or extra help will get things going. Lisa has of-
ten noted when there’s a lot of testing left to do and time is running out. She
asks for help to pick up the slack. The whole team focuses on what needs to
be done to complete each story and talks about the best approach.

When teams use an electronic medium for keeping track of stories, there is a
tendency to forget the story board. Janet finds that having both may seem
like a duplication of effort, but the visibility of progress to the team far out-
weighs the extra overhead of writing up the task cards and moving them as
they are completed. Having the story board gives your team focus during the
stand-ups or when you are talking to someone outside the team about your
progress.

Testers Facilitate Communication

Testers can help keep the iteration progressing smoothly by helping make
sure everyone is communicating enough. Talk to programmers when they
start working on a story, and make sure they understand it. Lisa finds that
she can write all of the tests and examples she wants on the team wiki, but if
nobody bothers to read them, they don’t help. When in doubt, she goes over
requirements and tests with the programmer who picks up the task cards.

Programmers will always have questions as they develop a story, even if they
understand the business and the story well. It’s best if a customer is available

More on retro-
spectives in Chap-
ter 19, “Wrap Up
the Iteration.”

430 CHAPTER 18 � CODING AND TESTING

to answer questions, because that is the most direct communication. Testers
shouldn’t get in the way of that; however, we’ve observed that business ex-
perts sometimes have trouble explaining a requirement, or a programmer
simply gets the wrong idea and can’t get on the same page with the customer.
The Power of Three applies here. Testers can help customers and program-
mers find a common language.

Facilitating communication usually involves drawing on a whiteboard, mock-
ing up interfaces, listing other areas that might be affected, or working through
real examples. Whenever communication appears to reach a dead end, or con-
fusion is rampant, ask for a new example and focus on that.

When retirement plan participants want to withdraw money from their accounts,
many complex vesting rules and government regulations come into play. It gets
worse if the participant has withdrawn money in the past. Working on a story to
calculate a participant’s vested balance, my team members all had different ideas
on the correct algorithm, even though the product owner had worked through

A Little Friendly Competition
Gerard Meszaros, well-known agile coach and author of xUnit Test Patterns
[2007], shared this story about a team he was working with and how a game
solved a communication issue.

We were having trouble getting the developers to talk to the business
people about their assumptions. When they did talk, the tester often
got left out of the loop. The tester would sometimes discuss something
with the business but never pass it on to the developer. Our project
manager, Janice, decided to try to change the behavior through friendly
competition.

All of the developers were given blue poker chips with a “D” written on
them. All of the testers got a red chip with a “T” on them, and the busi-
ness people got yellow chips with a “B” on them. Whenever someone
met with a counterpart from another area, he or she could exchange one
chip with each person. The goal was to get the most complete sets of
chips: T-B-D. The winner got a custom-made T-B-D trophy decorated with
the three kinds of chips. The end result was that everyone was much
keener to meet with each other because they would get more chips!

Find creative ways to get the business experts and programmers to talk and
agree upon requirements. If a poker chip game gets them talking, embrace it.

Lisa’s Story

FACILITATE COMMUNICATION 431

several examples at the beginning of the iteration. My fellow tester, Mike, asked
the product owner to work through a new example, and several programmers
and testers joined the session. It took a couple of rather tortuous hours of writing
numbers and flowcharts on a whiteboard, but eventually they arrived at the cor-
rect formula, and everyone was on the same page.

—Lisa

Work through as many examples as you need until the team understands
enough different aspects of the system. Try a different format if it’s not work-
ing. For example, if pictures drawn on the whiteboard aren’t sufficient to un-
derstand the story, try spreadsheets or some other format that’s familiar to
the business experts.

Distributed Teams

As we’ve noted in other chapters, having team members in different locations
and different time zones means you have to work harder at communication.
Phones, email, and instant messaging form the basics of communication, but
better collaboration tools are developed all the time.

One of the programmers on our team, who is also a manager, moved to India.
Nanda works late into the evening there, so he’s available for the Denver team in
the mornings. He has a cell phone with a local Denver phone number, so it’s easy
to talk to him by phone as well as by instant message and email. We schedule
meetings where we discuss stories, such as estimating meetings, brainstorming
sessions, and iteration planning, early in the morning so he can participate. Al-
though the team can’t be as productive as we were when we were co-located,
we’re still able to benefit from Nanda’s domain expertise and deep knowledge of
the software.

If Nanda hires more team members in India, we may have to address more com-
plex issues, such as coordinating integration and builds. We may consider more
sophisticated technical solutions to communication problems.

—Lisa

You will need to experiment to see what works for your distributed team. Use
retrospectives to evaluate whether collaboration and communication need
improving, and brainstorm ways to improve. You, as a tester, may have a lot
of experience in helping with process improvement projects. Just think about
improving communication as one of those continual improvement needs.

Chapter 9, “Tool-
kit for Business-
Facing Tests that
Support the
Team,” talks about
some tools that
can help distrib-
uted teams

Lisa’s Story

432 CHAPTER 18 � CODING AND TESTING

We all need to be able to communicate well with each other for our projects
to succeed. When teams are in diverse geographic locations, they might have
to work twice as hard to stay in constant touch.

REGRESSION TESTS

Unless you’re on a team that’s just starting its automation efforts, you have
automated regression tests covering stories from previous iterations. Hope-
fully, these are running as part of a continual build process, or at least part of
a daily build process. If they aren’t, ask your team to make implementing this
critical infrastructure a priority, and brainstorm with them how this might
be done. Plan time in the next iteration to start a build process.

A Remote Tester’s Story
Sometimes, the testers are the remote team members. Erika Boyer of iLevel by
Weyerhaeuser lives on the East Coast and works with a team in Denver. She’s
a tester by profession, but on her team all tasks are up for grabs. She might
write fixtures to automate a FitNesse test or pair with a programmer to write
production code. Being able to get in touch with people when she needs
them is an issue. If she doesn’t get a response when she instant-messages a
coworker, she phones; every work area in the Denver office has a phone. It’s
not foolproof, because everyone could be in the break room at a going-away
party and forgot to tell her. Teams in different locations have to make a spe-
cial effort to keep each other informed.

Because Erika starts working a few hours before the team’s daily stand-up,
she needs work she can do alone during that time. She works with any team
members who come in early in Denver and converses with other program-
mers late in the day about work she’ll do the next morning.

Erika is able to see the team’s tasks using a tool on their intranet that shows
each task, its status, and its percentage complete. With a few extra accom-
modations, the team (which has other remote members) is able to keep up
good communication.

Even from a distance, Erika has been able to transfer testing skills to the pro-
grammers but has found they think differently than testers. Her team uses
these varying perspectives to their advantage by rotating all types of tasks
among all of the team members.

Successful teams keep remote members “in the loop” and share skills and ex-
pertise. Distributed teams face extra challenges in successfully completing
testing activities, but some minor adjustments, thoughtfulness on the part of
all team members, and good communication tools help ensure that remote
testers can be productive.

REGRESSION TESTS 433

Keep the Build “Green”

Programmers should run all automated unit tests before checking in new
code. However, unit tests may fail in the continual build, either because some-
one forgot to run them before check-in, or because of a difference in runtime
environment or IDE. We have unit tests for a reason, so whenever one fails,
the team’s highest priority (apart from a showstopper production issue)
should be to fix it and get the build working again.

Teams take different approaches to make sure their build stays “green.” Lisa’s
team has a build process that emails results after every build. If the build fails,
the person who checked in the failure usually fixes it right away. If it’s not
clear why the build failed, team members will get together to investigate.
Their ScrumMaster has a stuffed toy that she puts on the desk of the person
who “broke the build,” as a visual reminder that it has to be fixed right away.

Some teams use a traffic light, ambient orb, GUI build monitoring tool, or
other electronic visual way to show the build status. When the lights turn
red, it’s time to stop new development and fix the build. Another technique is
to have a screen pop up in everyone’s IDE showing that the build has failed,
and the popup won’t go away until you click “Ok, I’ll fix the build.” Have
some fun with it, but keeping the build running is serious business.

In extreme cases, you may have to temporarily comment out a failing test un-
til it can be diagnosed, but this is a dangerous practice, especially for a novice
team. Everyone on the team should stop what they’re doing if necessary until
the build works again.

Keep the Build Quick

The build needs to provide immediate feedback, so keep it short. If the build
takes longer than the average frequency of code check-ins, builds start to
stack up, and testers can’t get the code they need to test. The XP guideline for
build time is ten minutes [Fowler, 2006]. Lisa’s team tries to keep the build
less than eight minutes, because they check in so often.

Tests that take too long, such as tests that update the database, functional
tests above the unit level, or GUI test scripts, should run in a separate build
process. If the team is limited in hardware, they might have to run the “full”
build with the full suite of tests at night and the “ongoing” build that has only
unit tests continually during working hours. Having a separate, continual
“full” build with all of the regression test suites is worth the investment. Lisa’s
team gets feedback every 90 minutes from their “full” build, and this has

434 CHAPTER 18 � CODING AND TESTING

proven invaluable in heading off regression issues. This secondary suite of
tests does not stop a programmer from checking in their code.

Building a Regression Suite

During the iteration, you’re automating new tests. As soon as these pass, add
them to the regression suite, as appropriate. You may not need every edge
case or permutation included in the regression suite, and you want to keep
the regression suites fast enough to provide timely feedback. As each story is
completed, tests that confirm its functionality should be included in the re-
gression suite and be part of the regular build cycle.

The regression tests themselves must be under some form of version control.
It’s best to keep them in the same source code control system as the produc-
tion code. That way, when you tag the code for production release, the tag
also contains all of the versions of the tests that worked with the code. At
minimum, keep a daily backup of the test code.

When tests have been added to the regression suite, their purpose changes.
They no longer exist to help drive development, and they are not expected to
find new bugs. There sole purpose in life is to detect unexpected changes or
side effects in the system.

Checking the “Big Picture”

Hopefully, you wrote task cards to test the story in the context of the larger ap-
plication and regression test other parts of the system to ensure the new story
hasn’t had a negative effect. You may have automated some of those end-to-
end tests like the example in Chapter 12, “Summary of Testing Quadrants.”

But sometimes, even if you have a large suite of regression tests, manual ex-
ploratory testing can be appropriate. The story isn’t “done” until you’ve com-
pleted these tasks as well.

RESOURCES

As you start the iteration, make sure that test environments, test data, and
test tools are in place to accommodate testing this iteration’s stories. Hope-

ITERATION METRICS 435

fully you’ve anticipated these needs, but some requirements might only be-
come obvious when you start working on a story. Collaborate with database
experts, system administrators, and other team members to set up any addi-
tional infrastructure needed.

You may have brought in outside resources for this iteration to help with per-
formance, usability, security, or other forms of testing. Include them in
stand-ups and discussions with the customers as needed. Pair with them and
help them understand the team’s objectives. This is an opportunity to pick
up new skills.

ITERATION METRICS

In Chapter 5, “Transitioning Typical Processes,” we talked a bit about the
purpose of metrics, but because metrics are critical to understanding how
your coding and testing activities are progressing, we’ll delve into them more
here. Know what problem you are trying to solve before you start measuring
data points and going to all the work of analyzing the results. In this section,
we’ll cover some of the typical measurements that teams gather through the
iteration.

Measuring Progress

You need some way to know how much work your team has completed at
any point in the iteration and an idea of how much work is left to do. You
need to know when it becomes obvious that some stories can’t be completed
and the team needs a Plan B. Iteration burndown charts and estimated versus
actual time for tasks are examples used to measure team progress. They may
or may not provide value for your particular team.

Story or task boards are a good visual way to know the iteration’s status, es-
pecially if color coding is used. If too many test task cards are still in the “to
do” column or not enough coding task cards have been moved to “Done” or
“Tested,” it’s time for the team to think of ways to make sure all of the testing
is completed. Maybe some team members need to stop coding and start tak-
ing on testing tasks, or maybe one story or a less critical part of a story needs
to be put off until the next iteration so that testing for all the other stories can
be finished.

Chapter 15,
“Tester Activities
in Release or
Theme Planning,”
talks about useful
metrics to keep.

436 CHAPTER 18 � CODING AND TESTING

This can be accomplished with virtual story boards as well as physical ones.
Get creative with your visual effects so that problems are instantly visible. Re-
member that no story is “done” until it’s tested at all appropriate levels.
Teams may have other criteria for when a story is “done,” such as whether it
has been peer reviewed or the automated regression tests are completed. On
the story board shown in Figure 18-6, the “Done” column for each story row
is the rightmost column. The column just to the left of it is the “Verify” col-
umn. The story isn’t considered “done” until all the cards, including testing
task cards, are in that “Done” column. A glance at the board is enough to
know which stories are finished.

Even teams that don’t track burndown at the task level can do so at the story
level. Knowing how much work the team can do each iteration (its velocity)
helps with the overall release plan, and the reprioritizing for each iteration.
It simply may be enough to know the number of stories completed in an it-
eration if they tend to average out to the same size. Although plans are ten-
tative at best, it’s helpful to get an idea of about how many stories can be

Figure 18-6 Story board showing iteration stories and tasks

ITERATION METRICS 437

completed by a hard release date or what stories might get done in the up-
coming quarter.

Defect Metrics

We talked about defect metrics in Chapter 15, “Tester Activities in Release or
Theme Planning” giving you some high level ideas about what to track.
Gathering metrics on defects can be very time consuming so always consider
the goal before you start to measure. What is the purpose of the metrics you
would like to gather? How long will you need to follow the trend before you
know if they are useful?

Defect containment is always a favorite metric to capture. When was the de-
fect found? In traditional projects, it is much easier as you have “hard” re-
quirements and coding phases. When the whole team is responsible for
quality, and everyone is working together throughout, it is much harder to
determine “when” the defect was injected into the system.

We would like to challenge the idea of this type of metric as not necessary in
agile development. However, if you find a lot of bugs are slipping through,
you may want to start tracking what type of bugs they are so you can address
the root cause. For example, if the bugs could have been caught with unit
tests, then maybe the programmers need more training on writing unit tests.
If the bugs are missed or misunderstood requirements, then maybe not
enough time is spent in iteration planning, or acceptance tests aren’t detailed
enough.

If you are practicing zero tolerance for defects, then you probably have no
need to be tracking defects during coding and testing. A simple card on the
story board will give you all the information you need.

Whatever metrics you choose to measure, go for simplicity.

In one organization I was with, we tracked the number of defects logged in the
DTS over several releases. These were defects that escaped the iteration or were
found in the legacy system. Figure 18-7 shows the trend over a year and a half.

At the beginning, the number of issues found right after it was released to QA for
final testing was high (33 issues found in one month). The customers found even
more issues during UAT which lasted over two months because they were not

Janet’s Story

438 CHAPTER 18 � CODING AND TESTING

confident in the quality of the release. In the month that zero defects were re-
ported, we were just starting a new release so there was no new functionality to
test. Over the next year, fewer and fewer defects were logged and it becomes im-
possible to tell where an actual release happened by just looking at the trend.

This graph was used to show customers that the team was becoming consistent
with their testing and their releases. Once the team and customers had faith the
numbers were not going up, the metrics were no longer needed and were
dropped.

—Janet

Don’t be afraid to stop using metrics when they are no longer useful. If the
problem they were initially gathered for no longer exists, there is no reason to
keep gathering them.

Your team may have to provide metrics to upper managers or a Project Man-
agement Office (PMO), especially if you work for a large organization. Patrick
Fleisch, an Accenture Consultant who was working as a functional analyst at a

Figure 18-7 Sample Defect Trend (but stopped after a while)

ITERATION METRICS 439

Useful Iteration Metrics
Coni Tartaglia, a software test manager at Primavera Systems, Inc., explains
some ways she has found to achieve useful iteration metrics.

Collecting metrics at the end of the iteration is particularly useful when
many different teams are working on the same product releases. This
helps ensure all teams end the iteration with the same standard for
“done.” The teams should agree on what should be measured. What fol-
lows are some standards for potentially shippable software [Schwaber
2004], and different ways of judging the state of each one.

• Sprint deliverables are refactored and coded to standards.

Use a static analysis tool. Focus on data that is useful and actionable. De-
cide each sprint if corrective action is needed. For example, use an open
source tool like FindBugs, and look for an increase each sprint in the
number of priority one issues. Correct these accordingly.

• Sprint deliverables are unit tested.

For example, look at the code coverage results each sprint. Count the
number of packages with unit test coverage falling into ranges of 0%–30%
(low coverage), 31%–55% (average coverage), and 56%–100% (high)
coverage. Legacy packages may fall into the low coverage range, while
coverage for new packages should fall into the 56%–100% range, if you
are practicing test driven development. An increase in the high coverage
range is desirable.

• Sprint deliverables have passing, automated acceptance tests.

Map automated acceptance tests to requirements in a quality manage-
ment system. At the end of the iteration, generate a coverage report
showing that all requirements selected as goals for the iteration have
passing tests. Requirements that do not show passing test coverage are
not complete. The same approach is easily executed using story cards on
a bulletin board. The intent is simply to show that the agreed-upon tests
for each requirement or story are passing at the end of the sprint.

• Sprint deliverables are successfully integrated.

Check the continuous integration build test results to ensure they are
passing. Run other integration tests during the sprint. Make corrections
prior to the beginning of the next iteration. Hesitate to start a new itera-
tion if integration tests are failing.

• Sprint deliverables are free of defects.

Requirements completed during the iteration should be free of defects.

• Can the product ship in [30] days?

440 CHAPTER 18 � CODING AND TESTING

software company during the time we wrote this book, gave us the following
examples of metrics his team provides to their PMO.

� Test execution numbers by story and functional area
� Test automation status (number of tests automated vs. manual)
� Line graph of the number of tests passing/failing over time
� Summary and status of each story
� Defect metrics

Gathering and reporting metrics such as these may result in significant over-
head. Look for the simplest ways to satisfy the needs of your organization.

SUMMARY

At this point in our example iteration, our agile tester works closely with pro-
grammers, customers, and other team members to produce stories in small
testing-coding-reviewing-testing increments. Some points to keep in mind are:

� Coding and testing are part of one process during the iteration.
� Write detailed tests for a story as soon as coding begins.
� Drive development by starting with a simple test; when the simple

tests pass, write more complex test cases to further guide coding.
� Use simple risk assessment techniques to help focus testing efforts.
� Use the “Power of Three” when requirements aren’t clear or opinions

vary.
� Focus on completing one story at a time.
� Collaborate closely with programmers so that testing and coding are

integrated.
� Tests that critique the product are part of development.
� Keep customers in the loop throughout the iteration; let them review

early and often.
� Everyone on the team can work on testing tasks.

Simply ask yourself this question at the end of each iteration, and pro-
ceed into the next iteration according to the answer.

Metrics like this are easy to collect and easy to analyze, and can provide valu-
able opportunities to help teams correct their course. They can also confirm
the engineering standards the teams have put in place to create potentially
shippable software in each iteration.

SUMMARY 441

� Testers can facilitate communication between the customer team and
development team.

� Determine what the best “bug fixing” choice for your team is, but a
good goal is to aim to have no bugs by release time.

� Add new automated tests to the regression suite and schedule it to run
often enough to provide adequate feedback.

� Manual exploratory testing helps find missing requirements after all
the application has been coded.

� Collaborate with other experts to get the resources and infrastructure
needed to complete testing.

� Consider what metrics you need during the iteration; progress and
defect metrics are two examples.

This page intentionally left blank

443

Chapter 19

WRAP UP THE ITERATION

We’ve completed an iteration. What do testers do as the team wraps up this iter-
ation and prepares for the next? We like to focus on how we and the rest of our
team can improve and deliver a better product next time.

ITERATION DEMO

One of the pleasures of agile development is the chance to show completed
stories to customers at the end of each iteration. Customers get to see a real,
live, working application. They get to ask questions and give feedback. Every-
one involved in the project, from both the business and technical sides, gets
to enjoy a sense of accomplishment.

On Lisa’s team, the testers conduct the iteration review. Among all the team
members, they’ve usually worked on the most stories. They have a natural
role as information providers, and they have a good idea what the customers
need to know about the new functionality. Having testers show off the deliv-
erables is a common practice, although there is no hard and fast rule. The
business experts on the team are a good choice for conducting the demo too,
because they have the best understanding of how the software meets the
business needs and they’ll feel greater ownership of the product. The Scrum-
Master, a programmer, or a business analyst could demonstrate the new fea-
tures and often does. Janet encourages rotating this honor.

Start, Stop, Continue

Ideas for Improvement
Retrospectives

Iteration Demo

Wrap Up
the Iteration

Celebrate Successes

444 CHAPTER 19 � WRAP UP THE ITERATION

Anyone may note the comments made by customers as they participate in
the demo, but testers are good candidates. They may notice previously unde-
tected inconsistencies as the demo progresses. As questions come up, cus-
tomers might decide they want to change something minor, such as help text,
or something bigger, such as how a feature behaves. Minor changes can usu-
ally be made into tasks and dealt with in the next iteration, but some changes
are big enough to turn into stories to plan into future releases.

Iteration demos (called sprint reviews in the Scrum world) are a super op-
portunity to get everyone talking and thinking about the application. Take
advantage of it. Review meetings are usually short and can be under half an
hour. If there’s time left over after demonstrating new stories, ask customers
if they’ve experienced any problems with the previous release that they haven’t
reported. Do they have any general concerns, do they need help understand-
ing how to use a feature, or have any new issues arisen? Of course, you can
talk to customers anytime, but having most of the stakeholders in the room
with the development team can lead to interesting ideas.

RETROSPECTIVES

Agile development means continually improving the way you work, and ret-
rospectives are an excellent place to start identifying what and how you can
do better. We recommend taking time at the end of each iteration and release
cycle to look back and talk about what went well, what didn’t, and what you
might like to try in the next iteration. There are different approaches for con-
ducting retrospective sessions. No matter what approach you use, it’s key that
each team member feels safe, everyone is respected, and there’s no finger-
pointing or blame.

Listening to the Customers
Pierre Veragen explains how his team uses iteration demonstrations.

“We shut up and listen to our customers. It’s all about the chemistry of
the group’s presentation. Somehow, sharing the moment brings brains
together—we look at things from a different perspective. The event gives
birth to ideas and concepts. Some die as the next person speaks; some
live on and become that great idea that differentiates the product.”

The demo is a chance to show off the new stories, but the feedback custom-
ers provide is the biggest reason to do them.

RETROSPECTIVES 445

The whole idea is to make the process better, one baby step at a time.

Start, Stop, Continue

One common exercise used in iteration retrospectives is “start, stop, continue.”
The team asks itself: “What went well during this past iteration? What hap-
pened that shouldn’t happen again? What can we start doing to help with
things that didn’t go well?” Each team member can suggest things to start do-
ing to improve, things to stop doing that weren’t working, and things that are
helping that should be continued. A facilitator or ScrumMaster lists them on a
whiteboard or big piece of paper. Post them in a location where everyone can
read them again during the iteration. Figure 19-1 shows a “stop, start, and con-
tinue” retrospective in progress. The ScrumMaster (standing) is writing stop,
start, and continue suggestions on the big piece of paper on the story board.

Some teams start this process ahead of time. All team members write “start,”
“stop,” and “continue” items on sticky notes, and then during the retrospec-
tive meeting they put the stickies on the board and group them by topic.
“Start, stop, continue” is just one example of the terms you might use. Some
other ideas are: “Things that went well,” “Things to improve,” “Enjoyable,”
“Frustrating,” and “To Try.” Use whatever names that work for you. It can be

Figure 19-1 A retrospective in progress

Agile Retrospec-
tives: Making
Good Teams Great
[2006] has imagi-
native ideas for
making retrospec-
tives more pro-
ductive (see the
bibliography).

446 CHAPTER 19 � WRAP UP THE ITERATION

hard to remember the past two weeks, much less an entire release, if that’s
what your retrospective covers. Research different creative approaches to re-
flecting on your team’s experiences.

Here’s a sample “stop, start, continue” list from Lisa’s team:

Start:

� Sending out next sprint’s stories to us earlier.
� Don’t do lazy, single-record processing. Think of every service call as

a remote call.
� Communicate any database changes to everyone.

Stop:

� Accepting stories without complete requirements.

Continue:

� Running FitNesse tests for the code you’re working on.
� Documenting what came up in meeting or informal discussions.
� Communicating better with each other.
� Showing mock-ups early.
� Doing FitNesse driven development.

If the list of “start, stop, continue” items is long, it’s a good idea to choose one
or two to focus on for the new iteration. To prioritize the items, give each
team member “n” votes they can assign to items. The ten people on Lisa’s
team each get three votes, and they can apply them all to one item if they feel
that’s most important, or they can vote for two or three different items. The
items with the most votes are noted as the focus items. Janet has had success
with this way of prioritizing as well.

In addition to “start, stop, continue” items, the team may simply write task
cards for actions to be undertaken the next iteration. For example, if the ongo-
ing build is too slow, write a card to “get ongoing build under ten minutes.”

In the next iteration, take some time to look at the one or two focus items you
wanted to improve. At the end of that iteration, take a checkpoint to see if you
improved. If not, ask why. Should you try something different? Is it still impor-
tant? It could be it has dropped in importance or really wasn’t important in the
big picture. If you thought you improved on a problem area and it resurfaces,
you’ll have to decide to do something about it or else quit talking about it.

RETROSPECTIVES 447

We’ve found that retrospectives are a simple and highly effective way for
teams to identify and address issues. The retrospective meeting is a perfect
opportunity to raise testing-related issues. Bring up the issues in an objective,
non-blaming way. The team can discuss each problem, what might be caus-
ing it, and write down some ideas to fix it.

Ideas for Improvements

Let’s take a look at some of those items that made it onto the list for improve-
ment. Too many times, a team will identify really big issues but never follow
up and actually do something about them. For example, maybe a lot of unit-
level bugs are discovered after the programmers have claimed coding was
complete.

The team may decide the programmers aren’t covering enough code with
unit tests. They might write an action item to run the code coverage tool be-
fore they check in new code, or start writing a “unit tests” task card for each
story to make sure they’re completed. Perhaps the team didn’t finish all the
test automation tasks before the iteration ended. As they discuss the prob-
lem, the team finds that the initial executable tests were too complex, and
they need to focus on writing and automating a simple test first, or pair for a
better test design. Make sure the action items are concrete.

Agile teams try to solve their own problems and set guidelines to help them-
selves improve. Action items aimed at one problem may help with others.
When Lisa’s team had trouble finishing stories and getting them tested dur-
ing each iteration, it came up with various rules over the course of a few
retrospectives:

� Finish high-level test cases for all stories by the fourth day of the
iteration.

� Deliver one story to test by the fourth day of the iteration.
� Focus on finishing one story at a time.
� 100% of features must be checked in by close of business on the next-

to-last day of the iteration.

These rules did more than help the team finish testing tasks. They facilitated
a flow and rhythm that helped the team work at a steady, sustainable pace
over the course of each iteration.

Begin the next retrospective meeting by reviewing the action items to see what
items were beneficial. Lisa’s team puts happy, sad, or neutral faces next to

448 CHAPTER 19 � WRAP UP THE ITERATION

items to denote whether the team tried them and found them successful. The
team should figure out the reasons behind any sad faces. Were some items
simply forgotten? Did time constraints keep the team from trying a new activ-
ity? Did it just seem to be less of a good idea later? These discussions might
lead to changing the improvement item or evolving it into a new one.

When the actions for improvement become a habit to the team, they no
longer need to be written on the “stop, start, and continue” list. “Start” items
that work well may be moved to the “Continue” column. Some ideas don’t
work, or prove to be unnecessary, and those can also be taken off the list for
the next iteration.

Refer to your ideas for improvement and action items during the iteration. Post
them in a location (on a wall or online) where everyone sees them often. Lisa’s
team sometimes goes through the list during a mid-iteration stand-up meeting.
If you think of new improvement ideas during the iteration, write them down,
possibly even on the existing list, so you won’t forget for the next iteration.

It’s a good idea to keep track of things that get in your way throughout the it-
eration. Keep an impediment backlog on some big visible chart. Talk about
the impediments in each iteration, and write task cards or take action to
eliminate them.

An Approach to Process Improvement
Rafael Santos, VP of Software Development and Chief ScrumMaster at Ultimate
Software, and Jason Holzer, the Chief PSR (Performance, Security, Reliability)
Architect, explained to us that their teams found retrospectives that used the
“stop, start, and continue” model ineffective. They made “stop, start, and
continue” lists, but those didn’t provide enough focus to address issues.

Instead, the ScrumMaster kept an impediment backlog, and the team found
that worked better than retrospectives. Impediments may be related to test-
ing or tools.

They also do value stream mapping to find the biggest “wait time,” and use
the “five whys” from Toyota to understand which impediment is the biggest or
which constraint needs to be addressed.

One example shared was that in a team with three programmers and one
tester, the biggest problem was a testing bottleneck. Rafael asked the team
what the tester does and wrote those items on a whiteboard. Then he asked
the programmers which of those things on the board they couldn’t do. There
was only one item they felt they couldn’t handle. This helped the programmers

See the bibliogra-
phy for good re-
sources for lean
development
practices.

CELEBRATE SUCCESSES 449

Use retrospectives as an opportunity to raise testing-related issues and get the
whole team thinking about possible solutions. We’ve been pleasantly sur-
prised with the innovative ideas that come out of an entire team focusing on
how to improve the way it works.

CELEBRATE SUCCESSES

Agile development practices tend to moderate the highs and lows that exist
in more traditional or chaotic processes. If your waterfall team finally man-
ages to push a release out the door after a year-long cycle ending in a two-
month stressful fix-and-test cycle, everyone may be ready to celebrate the
event with a big party—or they might just collapse for a couple of weeks. Ag-
ile teams that release every two weeks tend to stay in their normal coding and
testing groove, starting on the next set of stories after drawing just enough
breath to hold an iteration review and retrospective. This is nice, but you
know what they say about all work and no play.

Make sure your team takes at least a little time to pat itself on the back and
recognize its achievements. Even small successes deserve a reward. Enjoy-
ment is a vital agile value, and a little motivation helps your team continue
on its successful path. For some reason, this can be hard to do. Many agile
teams have trouble taking time to celebrate success. Sometimes you’re eager
to get going with the next iteration and don’t take time to congratulate your-
selves on the previous accomplishments.

Lisa’s team ends an iteration every other Thursday and conducts its retro-
spective, iteration review, and release the following day. After their meetings
conclude, they usually engage in something they call “Friday Fun.” This
sometimes consists of playing a silly trivia or board game, going out for a
drink, or playing a round of miniature golf. Getting a chance to relax and
have a good laugh has a team-building side benefit.

For bigger milestones, such as a big release or achieving a test coverage goal, the
whole company has a party to celebrate, bringing in catered food or going out

understand how everyone on the development team, not only the testers,
could be responsible for testing tasks. This was a highly effective exercise.

Creative approaches like this help new agile teams tackle difficult testing chal-
lenges. Retrospectives are a good environment for experimenting.

450 CHAPTER 19 � WRAP UP THE ITERATION

to a restaurant on Friday afternoon. This is a nice reward and recognizes for ev-
eryone on both the business and technical teams.

If yours is a new agile team, motivate yourselves by rewarding small accom-
plishments. Cheer the rising number of unit tests passing in each build.
Oooh and aaah over the chart showing actual burn down matching the pro-
jected burn down. Ring a bell when the broken unit tests in the build are
fixed (okay, that one might be annoying, but recognize it in some way.)

Celebrate your individual successes, too. Congratulate your coworker for
completing the project’s first performance test baseline. Give your DBA a
gold star for implementing a production back-up system. Give yourself a
treat for solving that hard test-automation problem. Bring cookies to your
next meeting with the customers. Recognize the programmer who gave you a
JavaScript harness that sped up testing of some GUI validations. Use your
imagination.

The Shout-Out Shoebox
We love the celebration idea we got from Megan Sumrell, an agile trainer and
coach. She shared this with an agile testing Open Space session at Agile
2007.

Celebrating accomplishments is something I am pretty passionate about
on teams. On a recent project, we implemented the Shout-Out Shoe-
box. I took an old shoebox and decorated it. Then, I just cut a slit in the
top of the lid so people could put their shout-outs in the box. The box is
open to the entire team during the course of the sprint.

Anytime team members want to give a “shout-out” to another team
member, they can write it on a card and put it in the box. They can range
from someone helping you with a difficult task to someone going above
and beyond the call of duty. If you have distributed team members, en-
courage them to email their shout-outs to your ScrumMaster who can
then put them in the box as well.

At the end of our demo, someone from the team gets up and reads all of
the cards out of the box. This is even better if you have other stakehold-
ers at your demo. That way, folks on your team are getting public recog-
nition for their work in front of a larger audience. You can also include
small give-aways for folks, too.

It may be a cliché, but little things can mean a lot. The Shout-Out Shoebox is
a great way to recognize the value different team members contribute.

SUMMARY 451

Taking time to celebrate successes lets your team take a step back, get a fresh
perspective, and renew its energy so it can keep improving your product.
Give team members a chance to appreciate each other’s contributions. Don’t
fall into a routine where everyone has their head down working all the time.

In agile development, we get a chance to stop and get a new perspective at the
end of each short iteration. We can make minor course corrections, decide to
try out a new test tool, think of better ways to elicit examples from custom-
ers, or identify the need for a particular type of testing expertise.

SUMMARY

� In this chapter, we looked at some activities to wrap up the iteration
or release.

� The iteration review is an excellent opportunity to get feedback and
input from the customer team.

� Retrospectives are a critical practice to help your team improve.
� Look at all areas where the team can improve, but focus on one or two

at a time.
� Find a way to keep improvement items in mind during the iteration.
� Celebrate both big and small successes, and recognize the contribu-

tions from different roles and activities.
� Take advantage of the opportunity after each iteration to identify

testing-related obstacles, and think of ways to overcome them.

This page intentionally left blank

453

Chapter 20

SUCCESSFUL DELIVERY

In this chapter, we share what you as a tester can do to help your team and your
organization successfully deliver a high-quality product. The same process and
tools can be used for shrink-wrapped products, customized solutions, or internal
development products. Agile testers can make unique contributions that help
both the customer and developer team define and produce the value that the
business needs.

WHAT MAKES A PRODUCT?
Many of the books on agile development talk about the actual development
cycle but neglect to talk about what makes a product and what it takes to suc-
cessfully deliver that product. It’s not enough to just code, test, and say it’s

Post-Development Testing Cycles

Deliverables

Production Support

Release Acceptance Criteria

Release Management

Packaging

Customer Expectations

Testing the Release Candidate

Testing on a Staging Environment

Final Nonfunctioning Testing

Integration with External Applications

Data Conversion, Database Updates

Installation Testing

Communication

What If It’s Not Ready?

Planning Enough Time for Testing

Customer Testing
UAT

Alpha/Beta Testing

End Game

Releasing
the Product

What Makes a Product?

Successful
Delivery

454 CHAPTER 20 � SUCCESSFUL DELIVERY

done. It’s like buying something from a store: If there is great service to go
with the purchase, how much more likely are you to go back and buy there
again?

I was talking to my friend, Ron, who buys and sells coins. Over the years he has de-
veloped a very good reputation in the industry and has turned away prospective
clients because he is so busy.

When I asked him his secret, he said, “It’s not a secret. I just work with my custom-
ers to make them feel comfortable and establish a trusting relationship with them.
In the end, both I and my customer need to be happy with the deal. It only takes
one unhappy customer to break my reputation.”

Agile teams can learn from Ron’s experience. If we treat our customers with re-
spect and deliver a product they are happy with, we will have a good relationship
with them, hopefully for many years.

—Janet

Our goal is to deliver value to the business in a timely manner. We don’t want
just to meet requirements but also to delight our customers. Before we re-
lease, we want to make sure all of the deliverables are ready and polished up
appropriately. Hopefully, you started planning early to meet not only the
code requirements but to plan for training, documentation, and everything
that goes into making a high-value product.

Fit and Finish
Coni Tartaglia, a software test manager with Primavera Systems, Inc., explains
“fit and finish” deliverables.

It is helpful to have a “Fit and Finish” checklist. Sometimes fit and finish
items aren’t ready to be included in the product until close to the end. It
may be necessary to rebuild parts of the product to include items such
as new artwork, license or legal agreements, digital signatures for execut-
ables, copyright dates, trademarks, and logos.

It is helpful to assemble these during the last full development iteration
and incorporate them into the product while continuous integration
build cycles are running so that extra builds are not needed later.

Business value is the goal of agile development. This can include lots beyond
the production code. Teams need to plan for all aspects of product delivery.

Janet’s Story

PLANNING ENOUGH TIME FOR TESTING 455

Imagine yourself in the middle of getting your release ready for production.
You’ve just finished your last iteration and are wrapping up your last story
test. Your automated regression suite has been running on every new build,
or at least on every nightly build. What you do now will depend on how dis-
ciplined your process has been. If you’ve been keeping to the “zero tolerance”
for bugs, you’re probably in pretty good shape.

If you’re one of those teams that thinks you can leave bugs until the end to
fix, you’re probably not in such good shape and may need to introduce an it-
eration for “hardening” or bug fixes. We don’t recommend this, but if your
team has a lot of outstanding bugs that have been introduced during the de-
velopment cycle, you need to get those addressed before you go into the end
game. We find that new teams tend to fall into this trap.

In addition, there are lots of varied components to any release, some in the
software, some not. You have customers who need to install and learn to use
the new features. Think about all those elements that are critical to a success-
ful release, because it’s time to wrap up all those loose ends and hone your
product.

Bob Galen, an agile coach and end-game expert, observes that agile develop-
ment may not have seeped into every organizational nook and cranny. He
notes, “Agile testers can serve as a conduit or facilitator when it comes to
physical delivery of the software.”

PLANNING ENOUGH TIME FOR TESTING

Because testing and coding are part of one process in agile development, we’d
prefer not to make special plans for extra testing time, but in real life we
might need some extra time.

Most teams accumulate some technical debt, despite the best intentions, espe-
cially if they’re working with legacy code. To maintain velocity, your team may
need to plan a refactoring iteration at regular intervals to add tests, upgrade
tools, and reduce technical debt. Lisa’s team conducts a refactoring sprint
about every six months. While the business doesn’t usually receive any direct
benefits at the end of a refactoring sprint, the business experts understand
that these special sprints result in better test coverage, a solid base for future
development, reduced technical debt, and a higher overall team velocity.

456 CHAPTER 20 � SUCCESSFUL DELIVERY

Some teams resort to “hardening” iterations, where they spend time only find-
ing and fixing bugs, and they don’t introduce any new functionality. This is a
last resort for keeping the application and its infrastructure solid. New teams
may need an extra iteration to complete testing tasks, and if so, they budget
time for that in the release plan.

Use retrospectives and other process improvement practices to learn ways to
integrate testing and coding so that the code produced in each iteration is
production-ready. When that goal is achieved, work to ensure that a stable
build that could be released to production is available every day. Lisa’s team
members thought that this was an unattainable goal in the days when they
struggled to get any stable build before release, but it was only a couple of
years before almost every build was release-worthy.

When your build is stable, you are ready to enter the “End Game.”

THE END GAME

What is the end game? We’ve heard people call the time right before delivery
many things, but the “end game” seems to fit best. It’s the time when the
team applies the finishing touches to the product. You’re dotting your i’s and
crossing your t’s. It’s the last stretch before the delivery finish line. It’s not
meant to be a bug-fix cycle, because you shouldn’t have any outstanding bugs
by then, but that doesn’t mean you might not have one or two to fix.

You might have groups in your organization that you didn’t involve in your
earlier planning. Now it’s time to work closely with the folks that administer
the staging and production environments, the configuration managers, the
database administrators outside of your team, and everyone who plays a role
in moving the software from development to staging and production. If you
weren’t working with them early this time, consider talking to these folks
during your next release planning sessions, and keep in touch with them
throughout the development cycle.

Bob Galen tells us that the testers on his team have partnered with the opera-
tions group that manages the staging and production environments. Because
the operations group is remote, it finds that having guidance from the agile
team is particularly valuable.

There are always system-level tests that can’t be automated, or are not worth
automating. More often than not, your staging environment is the only place

THE END GAME 457

where you can do some system-level integration tests or system-level load
and stress testing. We suggest that you allot some time after development for
these types of finishing tasks. Don’t code right up to the end.

Plan as much time for the end game as you need. Janet has found that the
length of time needed for the end game varies with the maturity of the team
and the size of the application. It may be that only one day is needed to finish
the extra tasks, but it may be one week or sometimes as much as a whole
two-week iteration. The team from the example used in Chapter 12, “Sum-
mary of Testing Quadrants,” scheduled two weeks, because it was a complex
system that required a fair bit of setup and system testing.

When I worked on a team developing applications for a client, we had to follow
the client’s release schedule. Testing with other parts of the larger system was only
possible during certain two-week windows, every six or eight weeks. Our team
completed two or three iterations, finishing all of the stories for each as if they
were releasing each iteration.

Then we entered a testing window where we could coordinate system testing
with other development teams, assist the client with UAT, and plan the actual
release. This constituted our end game.

—Lisa

If you have a large organization, you might have ten or fifteen teams develop-
ing software for individual products or for separate areas of functionality for
the same application. These areas or products may all need to release to-
gether, so an integrated end game is necessary. This does not mean that you
leave the integration until the very end. Coordination with the other teams
will be critical all along your development cycle, and if you have a test inte-
gration system, we recommend that you be sure that you have tried to inte-
grate long before the end game.

You also may have considerations beyond your team, for example, working
with software delivered by external teams at the enterprise level.

Use this end-game time to do some final exploratory testing. Step back and
look at the whole system and do some end-to-end scenarios. Such testing will
confirm that the application is working correctly, give you added confidence
in the product, and provide information for the next iteration or release.

Lisa’s Story

458 CHAPTER 20 � SUCCESSFUL DELIVERY

Testing the Release Candidate

We recommend that the automated regression testing be done against every
release candidate. If you’re following our recommendation to run automated
regression tests continually on each new build, or at least daily, you’ve already
done this. If some of your regression tests are manual, you’ll need to plan time
for those or they might not get done. A risk assessment based on changes
made to each build will determine what tests need to be run if there is more
than one release candidate.

Test on a Staging Environment

Whether you are using traditional or agile development processes, a staging en-
vironment that mimics production is vital for final testing before release, as well
as for testing the release process itself. As part of the end game, your applica-
tion should be deployed to staging just like you would deploy it to production,
or as your customers would on their environments. In many organizations
that Janet has seen, the staging environment is usually shared among multiple
projects, and the deployment must be scheduled as part of the release plan-
ning. Consider ahead of time how to handle dependencies, integrating with
other teams using the staging environment, and working with external third
parties. It might feel like “traditional” test planning, but you might be dealing
with teams that haven’t embraced agile development.

Although agile promotes continuous integration, it is often difficult to inte-
grate with third-party products or other applications outside your project’s
control. Staging environments can have better controls so that external appli-
cations may connect and have access to third-party test environments. Stag-
ing environments can also be used for load and performance testing, mock
deploys, fail-over testing, and manual regression tests and exploratory func-
tional testing. There are always configuration differences between environ-
ments so your staging environment is a good place to test these.

Final Nonfunctional Testing

Load testing should be scheduled throughout the project on specific pieces of
the application that you are developing. If your staging environment is in high
demand, you may not be able to do full system load testing until the end game.

By this time, you should be able to do long-running reliability tests on all
product functionality. Check for crashes and degradation of performance
with normal load. When done at release time, it should be a final confirma-
tion only.

THE END GAME 459

Fault tolerance and recovery testing is best done on your staging environment
as well, because test environments usually don’t have the necessary setup. For
these same reasons, you may only be able to test certain aspects of security.
One example is https, a secure http connection through encrypted secure
sockets. Some organizations may choose to have the necessary certificates on
their staging environment only. Other examples are clustering or data replica-
tion. Make sure you involve all parties who need to be included in this testing.

Integration with External Applications

Your team may be agile, but other product teams in your organization, or
third parties your team works with, may not be.

In one organization that I worked with, the third-party partner that approved
credit cards had a test account that could be used, but it was only accessible
from the staging environment.

To test during development, test stubs were created to return specified results
depending on the credit card number used. However, this wasn’t sufficient be-
cause the third party sometimes changed functionality on its end that we weren’t
aware of. Testing with the actual third party was critical to the success of the
project, and it is a key part of the end game.

—Janet

Coordinate well in advance with other product teams or outside partners
that have products that need to integrate with your product. If you have
identified these risks early and done as much up-front testing as possible, the
testing done during the end game should be final verification only. However,
there are always last-minute surprises, so you may need to be prepared to
make changes to your application.

Tools like simulators and mock objects used for testing during development
can help alleviate some of the risks, but the sooner you can test with external
applications, the lower the risk.

Data Conversion and Database Updates

As we are developing an application, we change fields, add columns in the da-
tabase, or remove obsolete ones. Different teams tackle this in different ways.
Some teams re-create the database with each new build. This works for new
applications, because there is no existing data. However, after an application
exists in production and has associated data, this approach won’t work.

Janet’s Story

460 CHAPTER 20 � SUCCESSFUL DELIVERY

An application needs to consider the data that is part of the product. As with
so much in agile development, a joint effort by database experts, program-
mers, and testers on the team is required to ensure successful release of data-
base changes. Janet has seen a couple of different tactics for dealing with data
conversion and backward compatibility. Database scripts can be created by
the developers or database administrators as the team makes changes. These
scripts become part of the build and are continually tested. Another option is
for the team to run “diffs” on the database after all of the database changes
have been made.

If you’re a tester, ask your database administrator/developer to help your
team ensure that schemas are kept consistent among the production, test-
ing, and staging environments. Find a way to guarantee that all changes
made in the test environments will be done in the staging and production
environments during release. Keep the schemas matching (except for the
new changes still under development) in terms of column names, triggers,
constraints, indices, and other components. The same discipline applied to
coding and testing also should be applied to database development and
maintenance.

We recently had a bug released to production because some of the test schemas,
including the one used by regression tests, were missing a constraint. Without the
constraint in place, the code didn’t fail. This triggered an effort to make sure the
exact same update scripts get run against each schema to make changes for a
given release.

It turned out that different test schemas had small differences, such as old col-
umns still remaining in some or columns in different order in different schemas, so
it wasn’t possible to run the same script in every environment. Our database ad-
ministrator led a major effort to re-create all of the test schemas to be perfectly
compatible with production. He creates one script in each iteration with all nec-
essary database changes and runs that same script in the staging and production
environment when we release. This seems simple, but it’s easy to miss subtle dif-
ferences when you’re focused on delivering new features.

—Lisa

Automating data migrations enhances your ability to test them and reduces
the chance for human error. Native database tools such as SQL, stored proce-
dures, data import tools such as SQL*Loader and bcp, shell scripts, and Win-
dows command files can be used for automation because they can be cloned
and altered easily.

Lisa’s Story

THE END GAME 461

No matter how the database update and conversion scripts are created or
maintained, they need to be tested. One of the best ways to ensure all of the
changes have been captured in the update scripts is to use the customer’s data
if it is available. Customers have a habit of using the application in weird and
wonderful ways, and the data is not always as clean as we would like it. If the
development team cleans up the database and puts extra restrictions on a
column, the application on the customer’s site might blow up as soon as a
query touches a piece of data that does not match the new restrictions. You
need to make sure that any changes you’ve made are still compatible with ex-
isting data.

My team uses the staging environment to test the database update scripts. After
the scripts are run, we do manual testing to verify that all changes and data con-
versions completed correctly. Some of our GUI test scripts cover a subset of re-
gression scenarios. This gives us confidence about releasing to production, where
our ability to test is more limited.

—Lisa

When planning a data conversion, think about data cleanup as part of the
mitigation strategy. You have the opportunity to take the data that was en-
tered in some of the “weird and wonderful” ways we mentioned before and
massage or manipulate it so it conforms to the new constraints. This type of
job can take a long time to do but is often very worthwhile in terms of main-
taining data integrity.

Not everyone can do a good enough simulation of production data in the
staging environment. If a customer’s data is not available, a mitigation strat-
egy is to have a UAT at the customer site. Another way to mitigate risk is to
try to avoid large-scale updates and release in smaller stages. Develop new
functionality in parallel with the old functionality and use a system property
to “turn on” one or the other. The old functionality can continue to work in
production until the new functionality is complete. Meanwhile, testing can
be done on the new code at each iteration. New columns and tables can be
added to production tables without affecting the old code so that the data
migration or conversion for the final release is minimized.

Installation Testing

Organizations often have a separate team that deploys to production or cre-
ates the product set. These team members should have the opportunity to

Lisa’s Story

462 CHAPTER 20 � SUCCESSFUL DELIVERY

practice the deployment exactly as they would for production. If they use the
deployment to staging as their proving ground, they can work out any of the
problems long before they release to the customer.

Testing product installations can also mean testing various installations of
shrink-wrapped products to different operating systems or hardware. How
does the product behave? Does it do what is expected? How long will the sys-
tem need to be down for installation? Can we deploy without taking an out-
age? Can we make the user experience as pleasant as possible?

I had an experience a while ago that was not so pleasant, and it led me to wish
that someone had tested and fixed the issue before I found it. I bought a new lap-
top and wanted to transfer my license for one of my applications to the new com-
puter. It came with a trial version of the same application, so the transfer should
have been easy, but the new PC did not recognize the product key—it kept say-
ing it was invalid. I called the support desk and after a bit of diagnostics, I was in-
formed they were considered different products, so the key wouldn’t work.

Two more hours of support time, and the issue was fixed. The trial version had to
be removed, an old version had to be reinstalled, the key had to be reentered,
and all updates since the original purchase had to be uploaded. How much easier
would it have been for the development team to test that scenario and offer the
customer an informative message saying, “The trial version is not compatible with
your product key.” A message such as that would have let me figure out the prob-
lem and solve it myself rather than taking the support person’s time.

—Janet

Take the time you need to determine what your requirements are for testing
installation. It will be worth it in the end if you satisfy your customers.

Communication

Constant communication between different development team members is
always important, but it’s especially critical as we wrap up the release. Have
extra stand-up meetings, if needed, to make sure everything is ready for the
release. Write cards for release tasks if there’s any chance some step might be
forgotten.

My team releases after each iteration. We usually have a quick stand-up on the last
afternoon of the sprint to touch base and identify any loose ends. Before the
team had a lot of practice with releases, we wrote release task cards such as “run
database update script in staging” and “verify database updates in production.”

Janet’s Story

Lisa’s Story

THE END GAME 463

With more experience at deploying, we no longer need those cards unless we
have a new team member who might need an extra reminder. It never hurts to
have cards for release tasks, though.

—Lisa

Reminders of tasks, whether they are in a full implementation plan or just
written on task cards as Lisa’s team does, are often necessary. On simple im-
plementations, a whiteboard works well.

What If It’s Not Ready?

By constantly tracking progress in many forms, such as builds, regression test
suites, story boards, and burndown charts, a team usually knows well in ad-
vance when it’s in trouble on a release. There’s time to drop stories and read-
just. Still, last-minute disasters can happen. What if the build machine breaks
on the last day of the iteration? What if the test database crashes so that final
testing can’t be completed? What if a showstopper bug isn’t detected until fi-
nal functional testing?

We strongly advise against adding extra days to an iteration, because it will
eat into the next iteration or release development. An experienced team
might be flexible enough to do this, but it can derail a new team. Still, des-
perate times call for desperate measures. If you release every two weeks, you
may simply be able to skip doing the actual release, budget time into the next
iteration to correct the problems and finish up, and release on the next
scheduled date. If testing tasks are being put off or ignored and the release
goes ahead, bring up this issue with the team. Did the testing needs change,
or is the team taking a chance and sacrificing quality to meet a deadline? The
team should cut the release scope if the delivery date is fixed and in jeopardy.

If your release cycle is longer, more like three months, you should know in
advance if your release is in jeopardy. You probably have planned an end
game of at least two weeks, which will just be for final validation. When you
have a longer release cycle, you have more time to determine what you
should do, whether it’s dropping functionality or changing the schedule.

If your organization requires certain functionality to be released on a fixed
day and last-minute glitches threaten the release, evaluate your alternatives.
See if you can continue on your same development cycle but delay the release
itself for a day or a week. Maybe the offending piece of code can be backed
out temporarily and a patch done later. The customers have the ultimate say
in what will work for the business.

464 CHAPTER 20 � SUCCESSFUL DELIVERY

On the rare occasions when our team has faced the problem of last-minute show-
stoppers, we’ve used different approaches according to the situation. If there’s
nothing critical that has to be released right now, we sometimes skip the release
and release two iterations’ worth on the next release day. If something critical has
to go in, we delay the release a day or two. Sometimes we can go ahead and re-
lease what we have and do a patch release the next day. On one occasion, we
decided to have a special one-week iteration to correct the problems, release,
and then go back to the normal two-week iteration schedule.

After more than four years of practicing agile development, we have a stable build
almost 100% of the time, and we feel confident about being able to release
whenever it’s necessary. We needed a lot of discipline and continual improvement
to our process in order to feel that a more flexible approach could work for us. It’s
also nice to be able to release a valuable bit of functionality early, if we can. What
we’ve worked hard to avoid is falling into a death spiral where we can never re-
lease on schedule and we’re always playing catch-up.

Don’t beat yourself up if you can’t release on time. Your team is doing its best. Do
spend time analyzing why you got behind schedule, or over-committed, and take
action to keep it from happening again.

—Lisa

Work to prevent a “no go” situation with good planning, close collaboration,
driving coding with tests, and testing as you code. If your tracking shows the
release could be in jeopardy, remove the functionality that can’t be finished, if
possible. If something bad and unexpected happens, don’t panic. Involve the
whole team and the customer team, and brainstorm about the best solution.

CUSTOMER TESTING

There are a couple of different ways in which to involve your customers to get
their approval or feedback. User Acceptance Testing can be fairly formal,
with sign-offs from the business. It signifies acceptance of a release. Alpha or
beta testing is a way to get feedback on a product you are looking to release
but which is not quite ready.

UAT

User Acceptance Testing (UAT) is important in large customized applications
as well as internal applications. It’s performed by all affected business depart-
ments to verify usability of the system and to confirm existing and new (em-
phasis on new) business functionality of the system. Your customers are the

Lisa’s Story

CUSTOMER TESTING 465

ones who have to live with the application, so they need to make sure it
works on their system and with their data.

In previous chapters we’ve often talked about getting the customers involved
early, but at those times, the testing is done on specific features under develop-
ment. UAT is usually done after the team decides the quality is good enough to
release. Sometimes though, the timeline dictates the release cycle. If that is the
case, then try moving the UAT cycle up to run parallel with your end game.
The application should be stable enough so that your team could deploy to the
customer’s test system at the same time as they deploy to staging.

In one team I joined, the customers were very picky. In fact, the pickiest I had ever
seen. They always asked for a full week of UAT just to be sure they had the time to
test it all. They had prepared test cases and checked them all, including all the
content, both in English and in French. Showstopper bugs included spelling errors
such as a missing accent in the French content. Over time, as they gained more
confidence in our releases and found fewer and fewer errors, they relaxed their
demands but still wanted a week, just in case they couldn’t get to it right away.
Their business group was very busy.

One release came that pushed the timeline. We were being held to the release
date but couldn’t get all the functionality in and leave two weeks for the end
game. We talked with the business users and we decided to decrease the end
game to one week; the business users would perform their UAT while the project
team finished up their system testing and cleanup. The only reason we were able
to do this was because of the trust the customer had in our team and the consis-
tency of our releases.

The good news was that, once again, the UAT found no issues that could not wait
until the next release.

—Janet

Figure 20-1 shows an example timeline with a normal UAT at the end of the
release cycle. The team starts working on the next release, doing release plan-
ning, and starts the first iteration with all team members ready to go.

Work with customers so that they understand the process, their role, and what
is expected of them. If the UAT is not smooth, then the chances are there will
be a high level of support needed. An experienced customer test team may
have defined test cases, but most often its testing is ad hoc. Customers may
approach their testing as if they were doing their daily job but will probably
focus on the new functionality. This is an opportunity to observe how people

Janet’s Story

466 CHAPTER 20 � SUCCESSFUL DELIVERY

use the system and to get feedback from them on what works well and what
improvements would help them.

Testers can provide support to the customers who are doing the UAT by re-
viewing tests run and defects logged, and by tracking defects to completion.
Both of us have found it helpful to provide customers involved in doing UAT
with a report of all of the testing done during development, along with the
results. That helps them decide where to focus their own testing.

Alpha/Beta Testing

If you are an organization that distributes software to a large customer base,
you may not have a formal UAT. You are much more likely to incorporate al-
pha or beta testing. Your team will want to get feedback on new features from
your real customers, and this is one mechanism for doing so. Alpha testing is
early distribution of new versions of software. Because there are likely to be
some major bugs, you need to pick your customers wisely. If you choose this
method of customer feedback, make sure your customers understand their
role. Alpha testing is to get feedback on the features—not to report bugs.

Beta testing is closer to UAT. It is expected that the release is fairly stable and
can actually be used. It may not be “ready for prime time” for most custom-
ers, but many customers may feel the new features are worth the risk. Cus-

Release Timeline
Normal Release with UAT

Code and Test Code and Test

Code and Test Code and Test

Iter 1 Iter 2

End GameIter 3Iter 2

Release 2

Release
Planning

System
Test

UAT

Release 1. . .

. . .

Figure 20-1 Release timeline with UAT

POST-DEVELOPMENT TESTING CYCLES 467

tomers should understand that it is not a formal release and that you are
asking them to test your product and report bugs.

As a tester, it is important to understand how customers view the product,
because it may affect how you test. Alpha and beta testing may be the only
time you get to interact with end users, so take advantage of the chance to
learn how well the product meets their needs.

POST-DEVELOPMENT TESTING CYCLES

If you work in a large organization or are developing a component of a large,
complex system, you may need to budget time for testing after development is
complete. Sometimes the UAT testing, or the test coordination, isn’t as smooth
as it could be, so the timeline stretches out. Test environments that include test
versions of all production systems may only be available for small, scheduled
windows of time. You may need to coordinate test sessions with teams working
on other applications that interact with yours. Whatever the reason, you need
extra testing time that does not include the whole development team.

I worked on a team developing components of both internal and external appli-
cations for a large telecom client. We could only get access to the complete test
environment at scheduled intervals. Releases were also tightly scheduled.

The development team worked in two-week iterations. It could release to the test
environment only after every third iteration. At that time, there was a two-week
system integration and user acceptance test cycle, followed by the release.

Someone from my team needed to direct the post-development testing phase.
Meanwhile, the developers were starting a new iteration with new features, and
they needed a tester to help with that effort.

The team had to make a special effort to make sure someone in the tester role fol-
lowed each release from start to finish. For example, I worked from start to finish
on release 1. Shauna took over the tester role as the team started work on the
first iteration of release 2, while I was coordinating system testing and UAT on re-
lease 1. Shauna stayed as primary tester for release 2, while I assumed that role for
release 3.

—Lisa

Figure 20-2 shows an example timeline where the UAT was extended. This
could happen for any number of reasons, and the issue may not always be
UAT. Most of the team is ready to start working on the next release, but often

Lisa’s Story

468 CHAPTER 20 � SUCCESSFUL DELIVERY

a tester is still working with customers, completing final testing. Sometimes a
programmer will be involved as well. There are a couple of options. If the
team is large enough, you can probably start the next release while a couple
of team members work with the existing release (Release 2—Alternative 2 in
Figure 20-2). If you have a small team, you may need to consider an Iteration 0
with programmers doing refactoring or spikes (experiments) on new func-
tionality so that the tester working with the customer does not get left behind
(Release 2—Alternative 1 in Figure 20-2).

Be creative in dealing with circumstances imposed on your team by the reali-
ties of your project. While plans rarely work as expected, planning ahead can
still help you make sure the right people are in place to deliver the product in
a timely manner.

DELIVERABLES

In the first section of this chapter we talked about what makes a product. The
answer to this will actually depend on the audience: Who is accepting the
product, and what are their expectations?

Release Timeline
Overlapping Releases with Extended UAT

Code and Test Code and Test

End GameIter 3Iter 2

Refactoring,
Spikes

Code and Test

Iter 1 Iter 2

Release 2—Alternative 1

Release
Planning

System
Test

UAT

Release 1

Code and Test Code and Test

Iter 0 Iter 1

Release 2—Alternative 2

Release
Planning

Tester stays with this
release until UAT is
completed

If no tester available to work
on new release, programmers
can do refactoring, spikes

Other tester works
on next release

. . .

. . .

. . .

Figure 20-2 Release timeline—alternative approach with extended UAT

DELIVERABLES 469

If your customers need to meet SOX (Sarbanes-Oxley)compliance require-
ments, there will be certain deliverables that are required. For example, one cus-
tomer Janet has worked with felt test results should be thoroughly documented,
and made test results one of their SOX compliance measurement points, while a
different customer didn’t measure test results at all. Work with compliance and
audit personnel to identify reporting needs as you begin a project.

How much documentation is enough? Janet always asks two questions before
answering that question: “Who is it for?” and “What are they using it for?” If
there are no adequate answers to those questions, then consider whether the
documentation is really needed.

Deliverables are not always for the end customer, and they aren’t always in
the form of software. There are many internal customers, such as the produc-
tion support team members. What will they need to make their job easier?
Workflow diagrams can help them understand new features. They would
probably like to know if there are work-arounds in place so they can help
customers through problems.

Janet often gets asked about test coverage of code, usually by management.
How much of the application is being tested by the unit tests or regression
tests? The problem is that the number by itself is just a number, and there are
so many reasons why it might be high or low. Also, code coverage doesn’t tell
you about features that might have been missed, for which no code exists yet.
The audience for a deliverable such as code coverage should not be manage-
ment, but the team itself. It can be used to see what areas of the code are not
being tested.

Training could be considered a deliverable as well. Many applications require
customized training sessions for customers. Others may only need online
help or a user manual. Training could determine the success of your product,
so it’s important to consider. Lisa’s team often writes task cards for either a
tester or the product owner to make sure training materials and sessions are
arranged. Some people may feel training isn’t the job of testers or anyone else
on the development team. However, agile teams aim to work as closely as
possible with the business. Testers often have the domain expertise to be able
to at least identify training that might be needed for new or updated features.
Even if training isn’t the tester’s responsibility, she can raise the issue if the
business isn’t planning training sessions.

Many agile teams have technical writers as part of the team that write online
help or electronic forms of documentation. One application even included

470 CHAPTER 20 � SUCCESSFUL DELIVERY

training videos to help get started, and different members of the team were
the trainers. It is the responsibility of the team to create a successful product.

RELEASING THE PRODUCT

When we talk about releasing the product, we mean making it available to
the customer in whatever format that may take. Your organization might
have a website that gets updated or a custom application that is delivered to a
few large customers. Maybe the product is shrink-wrapped and delivered to
millions of PCs around the world, or downloaded off the Internet.

Release Acceptance Criteria

How do you know when you’re done? Acceptance criteria are a traditional
way of defining when to accept the product. Performance criteria may have

Nonsoftware Deliverables
Coni Tartaglia, software test manager at Primavera Systems, Inc., reflects on
what has worked for her team in delivering items that aren’t code but are
necessary for a successful release.

Aside from the software, what is the team delivering? It is helpful to have
a conversation with the people outside of the development team who
may be concerned with this question. Groups such as Legal, Product
Marketing, Training, and Customer Support will want to contribute to the
list of deliverables.

After there is agreement on what is being delivered, assembly of the
components can begin, and the Release Management function can pro-
vide confirmation of the delivery through execution of a release check-
list. If the release is an update to an existing product, testers can check
the deliverables from previous releases to ensure nothing critical is left
out of the update package. Deliverables can include legal notices, docu-
mentation, translations, and third-party software that are provided as a
courtesy to the customers.

Agile teams are delivering value, not just software. We work together with the
customer team to improve all aspects of the product.

There are no hard and fast rules to what should be delivered with the prod-
uct. Think of deliverables as something that adds value to your product. Who
should be the recipient of the deliverable, and when does it make the most
sense to deliver it?

RELEASING THE PRODUCT 471

to be met. We capture these for each story at the start of each iteration, and
we may also specify them for larger feature sets when we begin a theme or
epic. Customers may set quality criteria such as a certain percentage of code
covered by automated tests, or that certain tests must pass. Line items such as
having zero critical bugs, or zero bugs with serious impact to the system, are
often part of the release criteria. The customers need to decide how they’ll
know when there’s enough value in the product. Testers can help them define
release criteria that accomplish their goals.

Agile teams work to attain the spirit of the quality goals, not just the letter.
They don’t downgrade the severity of bugs to medium so they can say they
achieved the criterion of no high-severity bugs. Instead, they frequently look
at bug trends and think of ways to ensure that high-severity bugs don’t occur
in production.

Your quality level should be negotiated with your customer up front so that
there are no unpleasant surprises. The acceptance tests your team and your
customers defined, using real examples, should serve as milestones for
progress toward release. If your customer has a very low tolerance for bugs,
and 100% of those acceptance tests must be passing, your iteration velocity
should take that into consideration. If new features are more important than
bug fixes, well, maybe you will be shipping with bugs.

A Tale of Multitiered “Doneness”
Bob Galen, agile coach and author of Software Endgames, explains how
his teams define release acceptance criteria and evaluate whether they’ve
been met.

I’ve joined several new agile teams over the past few years, and I’ve seen
a common pattern within those teams. My current team does a wonder-
ful job of establishing criteria at a user story or feature level—basically
defining acceptance criteria. We’ve worked hard at refining our accep-
tance criteria. Initially they were developed from the Product Owners’
perspective, and often they were quite ambiguous and ill-defined. The
testers decided they could really assist the customers in refining their
tests to be much more relevant, clear, and testable. That collaboration
proved to be a significant win at the story level, and the Product Owners
really valued the engagement and help.

Quite often the testers would also automate the user story acceptance
tests, running them during each sprint but also demonstrating overall ac-
ceptance during the sprint review.

472 CHAPTER 20 � SUCCESSFUL DELIVERY

One problem we had, though, was getting this same level of clarity for
“doneness” at a story level to extend beyond the individual stories. We
found that often, when we approached the end of a Sprint or the end
game of a release, we would have open expectations of what the team
was supposed to accomplish within the sprint. For example, we would
deliver stories that were thoroughly tested “in the small”; that is, the
functionality of those stories was tested but the stories were not inte-
grated into our staging environment for broader testing. That wasn’t part
of our “understanding,” but external stakeholders had that expectation
of the teams’ deliverables.

The way the teams solved this problem was to look at our criteria as a
multitiered set of guiding goals that wrap each phase, if you will, of agile
development. An example of this is shown in Table 20-1.

Defining doneness at these individual levels has proven to work for our
teams and has significantly improved our ability to quantify and meet all
of our various customer expectations. Keep in mind that there is a con-
nection among all of the criteria, so defining at one level really helps de-
fine the others. We often start at the Release Criteria level and work our
way “backwards.”

Agile development doesn’t work if stories, iterations, or releases aren’t
“done.” “Doneness” includes testing, and testing is often the thing that gets
postponed when time is tight. Make sure your success criteria at every level
includes all of the necessary testing to guide and validate development.

Table 20-1 Different Levels of Doneness

Activity Criteria Example
Basic Team Work
Products

Doneness criteria Pairing or pair inspections of code prior
to check-in, or to development, execu-
tion, and passing of unit tests

User Story Level Acceptance tests Development of FitNesse-based accep-
tance tests with the customer AND
their successful execution and passing

Sprint or Iteration
Level

Doneness criteria Defining a Sprint Goal that clarifies the
feature development and all external
dependencies associated with a sprint

Release Level Release criteria Defining a broad set of conditions
(artifacts, testing activities or coverage
levels, results/metrics, collaboration
with other groups, meeting compliance
levels, etc.) that, if met, would mean
the release could occur

RELEASING THE PRODUCT 473

Each project, each team, each business is unique. Agile teams work with the
business experts to decide when they’re ready to deliver software to produc-
tion. If the release deadline is set in stone, the business will have to modify
scope. If there’s enough flexibility to release when the software has enough
value, the teams can decide when the quality criteria have been met and the
software can go to production.

Traditional software development works in long time frames, with deadlines
set far in advance and hurdles to clear from one phase to the next. Agile de-
velopment lets us produce quality software in small increments and release as
necessary. The development and customer teams can work closely to define
and decide what to release and when. Testers can play a critical role in this
goal-setting process.

Challenging Release Candidate Builds
Coni Tartaglia’s team uses a checklist to evaluate each release candidate
build. The checklist might specify that the release candidate build:

• Includes all features that provide business value for the release, includ-
ing artwork, logos, legal agreements, and documentation

• Meets all build acceptance criteria
• Has proof that all agreed-upon tests (acceptance, integration, regres-

sion, nonfunctional, UAT) have passed
• Has no open defect reports

Coni’s team challenges the software they might ship with a final set of inspec-
tions and agreed-upon “release acceptance tests,” or “RATS.” She explains:

The key phrase is “agreed-upon tests.” By agreeing on the tests in ad-
vance, the scope for the release checklist is well defined. Include system-
level, end-to-end tests in the RATS, and select from the compatibility ros-
ter tests, which will really challenge the release candidate build. Perfor-
mance tests can also be included in RATs. Agree in advance on the
content of the automation suites as well as a subset of manual tests for
each RAT.

Agree in advance which tests will be repeated if a RAT succeeds in caus-
ing the failure of a release candidate build. If the software has survived
several iterations of continuously run automated regression tests, passing
these final challenges should be a breeze.

Defining acceptance criteria is ultimately up to the customers. Testers are in a
unique position to help the customer and development teams agree on the
criteria that optimize product quality.

474 CHAPTER 20 � SUCCESSFUL DELIVERY

Release Management

Many organizations have a release management team, but if you don’t, some-
one still does the work. Many times in a small organization it is the QA man-
ager who fulfills this role. The person leading the release may hold a release
readiness meeting with the stakeholders to evaluate readiness.

A release readiness checklist is a great tool to use to walk through what is im-
portant to your team. The intention of this checklist is to help the team ob-
jectively determine what was completed and identify the risks associated with
not completing a task.

For example, if training is not required because the changes made to the prod-
uct were transparent to the end user, then the risk is low. However, if there
were significant changes to the process for how a new user is created in the
system, the risk would be very high to the production support or help teams,
and may warrant a delay. The needs of all stakeholders must be considered.

Release notes are important for any product release. The formality of these
depends on the audience. If your product is aimed at developers, then a “read
me” text file is probably fine. In other cases, you may want to make them
more formal. Whatever the media, they should address the needs of the audi-
ence. Don’t provide a lot of added information that isn’t needed.

When Janet gets a new release, one of the first things she does is check the
version and all of the components. “Did I get what they said they gave me?
Are there special instructions I need to consider before installing, such as de-
pendencies or upgrade scripts?” Those are good simple questions to answer
in release notes. Other things to include are the new features that the cus-
tomer should look for.

Release notes should give special consideration to components that aren’t
part of what your development team delivered, such as a help file or user
manuals prepared by a different team. Sometimes old release notes get left on
the release media, which may or may not be useful to the end user. Consider
what is right for your team and your application.

Packaging

We’ve talked a lot about continual integration. We tend to take it for granted
and forget what good configuration management means. “Build once, deploy
multiple times” is part of what gives us confidence when we release. We know
that the build we tested in staging is the same build that the customer tested

CUSTOMER EXPECTATIONS 475

in UAT and is the build we release to production. This is critical for a success-
ful release.

If the product is intended for an external customer, the installation should be
easy, because the installation may be the first look at the product that cus-
tomer has. Know your audience and its tolerance level for errors. How will
the product be delivered? For example, if it is to be downloaded off the Inter-
net, then it should be a simple download and install. If it is a huge enterprise
system, then maybe your organization needs to send a support person with
the product to help with the install.

CUSTOMER EXPECTATIONS

Before we spring new software on our customers, we’d better be certain they
are ready for it. We must be sure they know what new functionality to expect
and that they have some means to deal with problems that arise.

Production Support

Many organizations have a production or operations support team that
maintains the code and supports customers after it’s in production. If your
company has a production support team, that group is your first customer.
Make it your partner as well. Production support teams receive defect reports
and enhancement requests from the customers, and they can work with your
team to identify high-risk areas.

Very often the production support team is the team that accepts the release
from the development team. If your organization has this type of hand-off, it
is important that your development team works closely with the production
support team to make it a smooth transition. Make sure the production sup-
port team understands how to use the system’s log files and the messaging
and monitoring systems in order to keep track of operations and identify
problems quickly.

Understand Impact to Business

Every time a deployment to production requires an outage, the product is
unavailable to your customer. If your product is a website, this may be a huge
impact. If your product is an independent product to be downloaded onto a
PC, the impact is low. Agile teams release frequently to maximize value to the
business, and small releases have a lower risk of a large negative impact. It’s
common sense to work with the business to time releases for time periods

476 CHAPTER 20 � SUCCESSFUL DELIVERY

that minimize disruption. Automate and streamline deployment processes as
much as possible to keep downtime windows small. A quick deployment
process is also helpful during development in short iterations where we may
deploy a dozen times in one day.

New releases should be as transparent as possible to the customer. The fewer
emergency releases or patches required after a release, the more confidence
your customer will have in both the product and the development team.

Learn from each release and take actions to make the next one go more
smoothly. Get all roles, such as system and database administrators, involved in
the planning. Evaluate each release and think of ways to improve the next one.

SUMMARY

This chapter covered the following points:

� Successful delivery of a product includes more than just the applica-
tion you are building. Plan the non-software deliverables such as doc-
umentation, legal notices, and training.

� The end game is an opportunity to put the spit and polish, the final
finishing touches, on your product.

International Considerations
Markus Gärtner, an “agile affected” testing group lead, explains his team’s ap-
proach to timing its releases:

We build telecommunications software for mobiles, so we usually install
our software at night, when no one is likely to make calls. This might be
during our office hours, when we're handling a customer in Australia, but
usually it is during our nighttime.

My colleagues who do the actual installation—there are three within our
team—are most likely to appear late during next day's office hours be-
cause we don't have a separate group for these tasks.

As businesses and development teams become more global, release timing
gets more complicated. Fortunately, production configurations can make re-
leases easier. If your production environment has multiple application servers,
you may be able to bring them down one at a time for release without dis-
rupting users.

SUMMARY 477

� Other groups may be responsible for environments, tools, and other
components of the end game and release. Coordinate with them
ahead of time.

� Be sure to test database update scripts, data conversions, and other
parts of the installation.

� UAT is an opportunity for customers to test against their data and to
build their confidence in the product.

� Budget time for extra cycles as needed, such as post-development
cycles to coordinate testing with outside parties.

� Establish release acceptance criteria during release planning so that
you can know when you’re ready to release.

� Testers often are involved in managing releases and testing the
packaging.

� When releasing the product, consider the whole package—what the
customer needs and expects.

� Learn from each release, and adapt to improve your processes.

This page intentionally left blank

Part VI

SUMMARY

In Chapter 21, “Key Success Factors,” we pull things together and summarize
the agile approach to testing.

This page intentionally left blank

481

Chapter 21

KEY SUCCESS FACTORS

Having traveled through an iteration and beyond, following an agile tester as she
engages in many activities, we can now pick out some key factors that help testers
succeed on agile teams and help agile teams succeed at delivering a high-quality
product. We think agile testers have something special to offer. “Agile-infected”
testers learn how to apply agile practices and principles to help their whole team
produce a better product. “Test-infected” programmers on agile teams learn how
to use testing to produce better work. Lines between roles are blurred, but that’s a
good thing. Everyone is focused on quality.

We have gleaned some critical testing guidelines for agile teams and testers
from our own trial and error as well as from teams with which we’ve worked.
These guidelines are built on the agile testing matrix, on our experience of learning
to overcome cultural and organizational obstacles, our adventures in performing
the tester role on agile teams, and our experience of figuring out how best to use
test automation. We like lucky numbers, so in this chapter we present seven key
factors that help an agile tester succeed.

We asked a small group of people who were reviewing some of our chapters to
suggest the order in which to present these success factors. The results varied quite
a bit, although many (but not all) agreed on the top two. Pick the success factor
that will give you the biggest return on investment, and start working on it today.

Continuous Integration

Test Environments

Manage Technical Debt

Working Incrementally

Coding and Testing Are Part of One Process

Synergy between Practices

Build a
Foundation

of Core Agile
Practices

Adopt an Agile Testing Mind-Set

Use the Whole-Team Approach
Look at the Big Picture

Collaborate with Customers

Key Success
Factors

Automate Regression Testing

Provide and Obtain Feedback

482 CHAPTER 21 � KEY SUCCESS FACTORS

SUCCESS FACTOR 1: USE THE WHOLE-TEAM APPROACH

When the whole development team takes responsibility for testing and qual-
ity, you have a large variety of skill sets and experience levels taking on what-
ever testing issues might arrive. Test automation isn’t a big problem to a
group of skilled programmers. When testing is a team priority, and anyone
can sign up for testing tasks, the team designs testable code.

Making testers truly part of the development team means giving them the
support and training they need to adapt to the fast pace of agile develop-
ment. They have time to acquire new skills in order to collaborate closely
with members of both the development and customer teams.

If you manage an agile team, use the suggestions in Part II, “Organizational
Challenges,” to help your team adopt the whole-team approach. Remember
that quality, not speed, is the goal of agile development. Your team needs
testers to help customers clarify requirements, turn those into tests that guide
development, and provide a unique viewpoint that will promote delivery of a
solid product. Make sure the testers can transfer their skills and expertise to
the rest of the team. Make sure they aren’t pigeonholed in a role such as only
doing manual testing. Make sure that when they ask for help (which may re-
quire considerable courage on their part), their team members give it. The
reverse is true, too; a tester should step up whenever someone needs assis-
tance that they can provide.

If you’re a tester on an agile team, and there are planning meetings and de-
sign discussions happening that don’t include you, or the business users are
struggling to define their stories and requirements alone, it’s time to get up
and go talk to the rest of the team. Sit with the programmers, invite yourself
to meetings, and propose trying the “Power of Three” by involving a tester, a
programmer, and a business expert. Be useful, giving feedback and helping
the customers provide examples. Make your problems the team’s problems,
and make their problems yours. Ask your teammates to adopt a whole-team
approach.

SUCCESS FACTOR 2: ADOPT AN AGILE
TESTING MIND-SET

In Chapter 2, “Ten Principles for Agile Testers,” we cautioned agile testers to
lose any “Quality Police” mind-set they might have brought with them.
You’re on an agile team now, where programmers test and testers do what-
ever they can think of to help the team deliver the best possible product. As

See Chapter 2,
“Ten Principles for
Agile Testers,” for
an example of
how the “Power of
Three” works.

SUCCESS FACTOR 2: ADOPT AN AGILE TESTING MIND-SET 483

we emphasized in Chapter 2, an agile testing attitude is proactive, creative,
open to new ideas, and willing to take on any task. The agile tester constantly
hones her craft, is always ready to collaborate, trusts her instincts, and is pas-
sionate about helping the team and the business succeed.

We don’t mean that you should put on your Super Tester cape and go protect
the world from bugs. There’s no room for big egos on agile teams. Your
teammates share your passion for quality. Focus on the team’s goals and do
what you can to help everyone do their best work.

Use agile principles and values to guide you. Always try the simplest ap-
proach to meeting a testing need. Be courageous in seeking help and experi-
menting with new ideas. Focus on delivering value. Communicate as directly
and as often as possible. Be flexible in responding to change. Remember that
agile development is people-centric, and that we should all enjoy our work.
When in doubt, go back to the values and principles to decide what to do.

An important component of the agile testing mind-set is the drive to contin-
ually find better ways to work. A successful agile tester constantly polishes
her craft. Read good books, blogs, and articles to get new ideas and skills. At-
tend local user group meetings. Participate in mailing list discussions to get
feedback on problems or new ideas. If your company won’t pay for you to at-
tend a good conference, put what you’ve learned into an experience report to
exchange for a free conference registration. Giving back to your testing and
agile development communities will help you, too.

Experiment with new practices, tools, and techniques. Encourage your team
to try new approaches. Short iterations are ideally suited to experimentation.
You might fail, but it’ll be fast, and you can try something else.

If you manage agile testers or an agile team, give them time to learn and pro-
vide support for the training they need. Remove obstacles so that they can do
their best work.

When you’re faced with problems that impact testing, bring those problems
to the team. Ask the team to brainstorm ways to overcome these obstacles.
Retrospectives are one place to talk about issues and how to resolve them.
Keep an impediment backlog and address one or two in every iteration. Use
big visible charts, or their virtual equivalents, to ensure that everyone is
aware of problems that arise and that everyone can track the progress of cod-
ing and testing.

See Chapter 2,
“Ten Principles for
Agile Testers,” for
more about the
agile testing
mindset.

484 CHAPTER 21 � KEY SUCCESS FACTORS

SUCCESS FACTOR 3: AUTOMATE REGRESSION TESTING

Can an agile team succeed with no test automation? Maybe, but the success-
ful teams that we know rely on automated regression tests. As we’ve said of-
ten in this book, if you’re spending all your time doing manual regression
testing, you’ll never have time for the important exploratory testing that will
ferret out the damaging behaviors lurking in the code.

Agile development uses tests to guide development. In order to write code to
make a test pass, you need a quick and easy way to run the test. Without the
short feedback cycle and safety net regression that suites provide, your team
will soon become mired in technical debt, with a growing defect queue and
ever-slowing velocity.

Automating regression tests is a team effort. The whole team should choose
appropriate tools for each type of test. Thinking about tests up front will let
programmers design code for ease of test automation. Use the Agile Testing
Quadrants and test automation pyramid to help you automate different
types of tests effectively.

Remember to start simply. You’ll be surprised at how much value some basic
automated smoke tests or automated unit tests can provide.

Test automation is a team effort. It’s also hard, at least at first. There’s often a
big “hump of pain” to overcome. If you manage a development or testing
team, make sure you’re providing enough support in the form of time, train-
ing, and motivation. If you’re a tester on a team with no automation, and the
programmers are too frantic trying to write production code to stop and
think about testing, you have a big challenge ahead of you. Experiment with
different ways of getting support from management and from team members
to start some tiny automation effort.

SUCCESS FACTOR 4: PROVIDE AND OBTAIN FEEDBACK

Feedback is a core agile value. The short iterations of agile are designed to
provide constant feedback in order to keep the team on track. Testers are in a
unique position to help provide feedback in the form of automated test re-
sults, discoveries made during exploratory testing, and observations of actual
users of the system.

See Part II for more
on the Agile Test-
ing Quadrants.

See Chapter 14,
“Automation Strat-
egy,” for more on
the test automa-
tion pyramid.

See the bibliogra-
phy for resources
on promoting
change.

SUCCESS FACTOR 4: PROVIDE AND OBTAIN FEEDBACK 485

Agile Is All about Feedback
Bret Pettichord, CTO of WatirCraft and co-author of Lessons Learned in Soft-
ware Testing, shared these thoughts on the importance of feedback to agile
development.

Agile methods allow your team to get feedback regarding the software
you are building. That’s the point. The feedback works on several levels.
Pair programming gives developers instant feedback on their code. Sto-
ries represent units of work where testers and analysts can give feed-
back to developers. Iteration releases facilitate feedback from outside
the team. Most agile practices are valuable because they create feed-
back loops that allow teams to adapt.

A lot of teams adopt Agile with a grab-bag approach without quite real-
izing the point of the practices. They pair-program without discussion or
changing drivers. They send code to QA that the testers can’t test be-
cause the story boundaries are arbitrary; they can’t tell whether they
found a bug or just the end of the story. Iterations become schedule
milestones rather than real opportunities to improve alignment and ad-
just objectives.

The reason Agile teams can do with less planning is because feedback al-
lows you to make sure that you are on course. If you don’t have mean-
ingful feedback, then you’re not agile. You’re just in a new form of chaos.

On my last project, we defined our stories so that they made sense to
everyone on the team. Our analysts, testers, and developers could all
understand and review individual stories. But we found that we had to
create a larger grouping, which we called features, to facilitate meaning-
ful review from outside our team. We made sure all the stories in a fea-
ture were complete before soliciting feedback from outside the team.

Being able to give and receive meaningful feedback is often a challenge
for people. Yet it is crucial to success with Agile.

Agile teams get into terrible binds when executives or clients hand them
a list of requirements at the start, tell them to use Agile (because it’s
faster), and then don’t want to participate in the feedback process.

Agile isn’t faster all by itself. Agile is only a benefit in a world that ac-
knowledges the value of adapting. And that adaptability needs to go all
the way to whoever is funding the project. It is not enough for the team
to be agile. The sponsors need to be agile too. Are all of the require-
ments really required? Do we know exactly what the software needs to
look like from the start?

486 CHAPTER 21 � KEY SUCCESS FACTORS

Testers need feedback too. How do you know that you have the right exam-
ples of desired behavior from the customers? How do you know if the test
cases you wrote reflected these examples correctly? Can the programmers
understand what to code by looking at the examples you’ve captured and the
tests you’ve created?

One of the most valuable skills you can learn is how to ask for feedback on
your own work. Ask the programmers if they get enough information to un-
derstand requirements and whether that information guides their coding.
Ask customers if they feel their quality criteria are being met. Take time in
both the iteration planning meetings and retrospectives to talk about these
issues and suggest ways to improve.

SUCCESS FACTOR 5: BUILD A FOUNDATION
OF CORE PRACTICES

An old saying in the testing business is, “You can’t test quality into the prod-
uct.” This is, of course, true of agile development as well. We feel you can’t
deliver high-quality software without following some fundamental practices.
While we think of these as agile practices, they’ve been around longer than
the term “agile development,” and they’re simply core practices of successful
software development.

Continuous Integration

Every development team needs source code management and continuous in-
tegration to be successful. You can’t test effectively if you don’t know exactly

Agile is faster because feedback allows you to find and focus on the
most valuable features. If you are certain you know what needs to be
built, don’t use Agile. If you don’t have time to gather and act on feed-
back from customers, then don’t use Agile. If you are sure that everyone
understands exactly what needs to be done from the start, then don’t
use Agile.

Agile practices build a technical and organizational infrastructure to facil-
itate getting and acting on feedback. If you aren’t going to adapt to
feedback, then this infrastructure is waste that will only slow you down.

To us, the value of agile development isn’t that it’s faster but that it delivers
enough value quickly enough to help the business grow and succeed. Testers
play a key role in providing the feedback that allows that to happen.

SUCCESS FACTOR 5: BUILD A FOUNDATION OF CORE PRACTICES 487

what you’re testing, and you can’t test at all if you have no code you can de-
ploy. All team members need to check in their work at least once a day. Every
integration must be verified by an automated build that includes tests to pro-
vide rapid feedback about the state of the software.

Implementing a continuous integration process should be one of the first
priorities of any software development team. If your team doesn’t have at
least a daily verified build, stop what you’re doing and get one started. It’s
that important. It doesn’t have to be perfect to start with. If you have a huge
system to integrate, it’s definitely more challenging. In general, though, it’s
not that difficult. There’s a plethora of outstanding tools, both open source
and commercial, available for this purpose.

Test Environments

You can’t test productively without a test environment that you control. You
need to know what build is deployed, what database schema is being used,
whether anyone else is updating that schema, and what other processes are
running on the machine.

Hardware is getting less expensive all the time, and more open source software
is available that can be used for test environments. Your team must make the
investment so that you can effectively conduct automated and manual explor-
atory tests quickly and efficiently. If there’s a problem with the test environ-
ment, speak up and let it be a problem for the team to solve creatively.

Manage Technical Debt

Even good software development teams, feeling time pressure, neglect refac-
toring or resort to quick fixes and hacks to solve a problem quickly. As the
code becomes more confusing and hard to maintain, more bugs creep in,
and it doesn’t take long before the team’s velocity is consumed by bug fixes
and trying to make sense out of the code in order to add new features. Your
team must constantly evaluate the amount of technical debt dragging it
down and work on reducing and preventing it.

People often say, “Our management won’t give us time to do things right, we
don’t have time to refactor, and we’re under tight deadlines.” However, it’s
not hard to make a clear business case showing what growing technical debt
is costing the company. There are many ways to measure code and defect
rates that can translate technical debt into its impact on the bottom line.
Merely pointing to your decreasing velocity may be enough. Businesses need

See the bibliog-
raphy for more
information
about continu-
ous integration.

488 CHAPTER 21 � KEY SUCCESS FACTORS

their software development teams to remain consistently productive. They
may have to reduce the scope of their desired features in order to allow
enough time for good, test-guided code design and good practices such as
continual small refactoring.

Good coverage from automated regression tests is key to minimizing technical
debt. If these are lacking, budget time in each iteration to build up the auto-
mated tests, plan a “refactoring iteration” to upgrade or add necessary tools,
and write tests and do major refactoring efforts. In every iteration, take the
time to guide code with tests, refactor the code you’re touching as needed, and
add automated tests where they’re missing. Increase your estimates to account
for this work. In the long run, the team will be able to go much faster.

Working Incrementally

One reason agile teams are able to create a quality product is that they work
on a small scale. Stories represent a few days of work, and each story may be
broken into several thin slices or steel threads and built step-by-step. This al-
lows testing each small piece and then incrementally testing as the pieces are
put together.

If your team members are tempted to take on a large chunk of functionality
at once, encourage them to look at a stepwise approach. Ask questions:
“What’s the central business value in this story? What’s the most basic path
through this piece of code? What would come next?” Suggest writing task
cards to code and test the small pieces, get a proof of concept for your design,
and confirm your test and test automation strategy.

Coding and Testing Are Part of One Process

People who are new to agile often ask agile testers, “What do you do until all
the stories are finished and you can test?” Experienced agile practitioners say,
“Testers must be involved throughout the whole iteration, the whole devel-
opment process. Otherwise it doesn’t work.”

Testers write tests, based on examples provided by customers, to help program-
mers understand the story and get started. Tests and examples provide a com-
mon language that everyone involved in producing the software understands.
Testers and programmers collaborate closely as coding proceeds, and they both
also collaborate closely with the customers. Programmers show testers the
functionality they’ve written, and testers show programmers the unexpected
behaviors they’ve found. Testers write more tests as coding proceeds, program-

Read more about
small chunks and
thin slices in Chap-
ter 8, “Business-
Facing Tests that
Support the
Team.”

SUCCESS FACTOR 6: COLLABORATE WITH CUSTOMERS 489

mers make them pass, and testers do more exploratory testing to learn whether
the right value has been delivered. Each agile iteration consists of dozens of
constant, quick, incremental test-code-test-code-test iterations.

When this collaboration and feedback cycle is disturbed, and testing is sepa-
rated from development, bad things happen. If a story is tested in the itera-
tion after which it was coded and bugs are found, the programmer has to
stop working on the new story, remember how the code worked for the last
iteration’s story, fix it, and wait for someone to test the fix. There are few facts
in software development, but we know for sure that bugs are cheaper to fix
the sooner they’re found.

When coding is constantly guided by tests, and testing happens alongside
coding, we’re much more likely to achieve the behavior and provide the value
that the customer wanted. Testing is a team responsibility. If your team
doesn’t share this view, ask everyone to think about their focus on quality,
their desire to deliver the best possible product, and what steps they can take
to ensure that the team achieves its goals.

Synergy between Practices

A single agile development practice such as continuous integration can make a
difference, but the combination of multiple agile practices is greater than the
sum of the parts. Test-driven design, collective code ownership, and continu-
ous integration together deliver rapid feedback, continually improving code
design and the ability to deliver business value quickly. Automating tests is
good, but using automated tests to drive development, followed up by explor-
atory testing to detect gaps or weaknesses, is many levels of magnitude better.

Some practices don’t work well in isolation. Refactoring is impossible with-
out automated tests. It’s possible to do small releases in a mini-waterfall fash-
ion and avoid all benefits of agile development. If your on-site customer isn’t
empowered to make decisions, her value to the team is limited.

Agile practices were designed to complement each other. Take time to under-
stand the purpose of each one, consider what is needed to take full advantage of
each practice, and make thoughtful decisions about what works for your team.

SUCCESS FACTOR 6: COLLABORATE WITH CUSTOMERS

Some of the greatest value that testers contribute to agile teams is helping
customers clarify and prioritize requirements, illustrating the requirements

Read more about
coding and test-
ing in Chapter 18,
“Coding and
Testing.”

490 CHAPTER 21 � KEY SUCCESS FACTORS

with concrete examples of desired behavior and user scenarios, and turning
those examples into executable tests. Testers speak the domain language of
the business and the technical language of the development team. We make
good facilitators and translators.

Never get in the way of direct communication between programmers and
customers. Do encourage as much direct communication as possible. Use the
“Power of Three.” When requirements are missed or misunderstood, a cus-
tomer, programmer, and tester need to work together to get questions an-
swered. Get the customers talking in front of a whiteboard or its virtual
equivalent as often as necessary. If customers are scattered around the cam-
pus, the country, or the globe, use every tool you can find to enhance com-
munication and collaboration. Teleconferences, instant messages, and wikis
aren’t an ideal replacement for face-to-face conversation, but they beat send-
ing emails or not talking at all.

SUCCESS FACTOR 7: LOOK AT THE BIG PICTURE

This is a generalization, of course, but we’ve found that testers tend to look at
the big picture, and usually from a customer point of view. Programmers
usually have to focus on delivering the story they’re working on now, and
while they may be using tests to guide them, they have to focus on the techni-
cal implementation of the requirements.

This big-picture viewpoint is a huge contribution to the team. Test-driven
development, done well, delivers solid code that may, in isolation, be free of
defects. What if that new feature causes some apparently unrelated part of
the application to break? Someone has to consider the impact to the larger
system and bring that to the team’s attention. What if we’ve overlooked some
little detail that will irritate the customers? The new UI may be flawlessly
coded, but if the background color makes the text hard to read, that’s what
the end user’s going to notice.

Use the Agile Testing Quadrants as a guide to help you plan testing that will
cover all the angles. Use the test pyramid idea to ensure good ROI from your
test automation. Guiding development with tests helps make sure you don’t
miss something big, but it’s not perfect. Use exploratory testing to learn
more about how the application should work, and what direction your test-
ing needs to take. Make your test environments as similar as possible to pro-
duction, using data that reflects the real world. Be diligent about re-creating
a production-style situation for activities such as load testing.

Part III explains
how to use the
Agile Testing
Quadrants.

SUMMARY 491

It’s easy for everyone on the team to narrowly focus only on the task or story
at hand. That’s a drawback of working on small chunks of functionality at a
time. Help your team take a step back now and then to evaluate how your
current stories fit into the grand scheme of the business. Keep asking your-
selves how you can do a better job of delivering real value.

SUMMARY

Testing and quality are the responsibility of the whole team, but testers bring a
special viewpoint and unique skills. As a tester, your passion for delivering a
product that delights your customers will carry you through the frustrations
you and your team may encounter. Don’t be afraid to be an agent for continual
improvement. Let agile principles and values guide you as you work with the
customer and development teams, adding value throughout each iteration.

In this concluding chapter, we looked at seven key factors for successful agile
testing:

1. Use the whole-team approach.
2. Adopt an agile testing mind-set.
3. Automate regression testing.
4. Provide and obtain feedback.
5. Build a foundation of core practices.
6. Collaborate with customers.
7. Look at the big picture.

This page intentionally left blank

493

GLOSSARY

This glossary contains the authors’ definitions of terms used throughout this
book.

Acceptance Test Acceptance tests are tests that define the business value each
story must deliver. They may verify functional requirements or nonfunctional
requirements such as performance or reliability. Although they are used to
help guide development, it is at a higher level than the unit-level tests used for
code design in test-driven development. Acceptance test is a broad term that
may include both business-facing and technology-facing tests.

Application programming interface (API) APIs enable other software to
invoke some piece of functionality. The API may consist of functions, proce-
dures, or classes that support requests made by other programs.

Build A build is the process of converting source code into a deployable arti-
fact that can be installed to run the application. The term “build” also refers
to the deployable artifact.

Component A component is a larger part of the overall system that may be
separately deployable. For example, on the Windows platform, dynamic
linked libraries (DLLs) are used as components, Java Archives (JAR files) are
components on the Java platform, and a service-oriented architecture (SOA)
uses Web Services as components.

Component Test A component test verifies a component’s behavior. Compo-
nent tests help with component design by testing interactions between objects.

Conditions of Satisfaction Conditions of satisfaction, also called satisfac-
tion conditions or conditions of business satisfaction, are key assumptions
and decisions made by the customer team to define the desired behavior of

494 GLOSSARY

the code delivered for a given story. Conditions of satisfaction are criteria by
which the outcome of a story can be measured. They evolve during conversa-
tions with the customer about high-level acceptance criteria for each story.
Discussing conditions of satisfaction helps identify risky assumptions and in-
creases the team’s confidence in writing and correctly estimating all the tasks
to complete the story.

Context-Driven Testing Context-driven testing follows seven principles,
the first being that the value of any practice depends on its context. Every
new project and every new application may require different ways of ap-
proaching a project. All seven practices can be found on the website
www.context-driven-testing.com/.

Customer Team The customer team identifies and prioritizes the features
needed by the business. In Scrum, these features become epics or themes,
which are further broken into stories and comprise the product backlog. Cus-
tomer teams include all stakeholders outside of the development team, such as
business experts, subject-matter experts, and end users. Testers and developers
work closely with the customer team to specify examples of desired behavior
for each story and turn those examples into tests to guide development.

Customer Test A customer test verifies the behavior of a slice or piece of
functionality that is visible to the customer and related directly back to a
story or feature. The terms “business-facing test” and “customer-facing test”
refer to the same type of test as customer test.

Development Team The development team is the technical team that pro-
duces the software requested by the customer team. Everyone involved in de-
livering software is a developer, including programmers, testers, database
experts, system administrators, technical writers, architects, usability experts,
and analysts. This development team works together to produce the software
and deliver value to the business, whether they are a co-located team or a vir-
tual team.

Epic An epic is a piece of functionality, or feature, described by the customer
and is an item on the product backlog. An epic is broken up into related sto-
ries that are then sized and estimated. Some teams use the term “theme” in-
stead of epic.

Exploratory Testing Exploratory testing is interactive testing that combines
test design with test execution and focuses on learning about the application.

GLOSSARY 495

See Chapter 10, “Business-Facing Tests that Critique the Product,” for an ex-
tensive definition of exploratory testing.

Fake Object A fake object replaces the functionality of the depended-on
component with a simpler implementation. It emulates the behavior of the
real depended-on component but is easier to use for testing purposes.

Feature A feature is a piece of functionality described by the customer and is
an item on the product backlog. A feature is broken up into related stories
that are then sized and estimated. In agile development, the terms “epic” or
“theme” are often used in place of “feature."

Functional Test Functional tests verify the system’s expected behavior given
a set of inputs and/or actions.

Greenfield Greenfield projects are new application development projects
starting from scratch with no existing code base. There are no constraints, so
development teams have many options open to them.

Integrated Development Environment (IDE) An Integrated Development
Environment, or IDE, is a set of tools that support programming and testing.
It usually includes an editor, compiler or intepreter debugger, refactoring ca-
pabilities, and build automation tools. IDEs usually enable integration with a
source code control system and provide language-specific support to help
with code design.

Iteration An iteration is a short development cycle, generally from one to
four weeks, at the end of which production-ready code can potentially be
delivered. Several iterations, each one the same length, may be needed to
deliver an entire theme or epic. Some teams actually release the code to
production each iteration, but even if the code isn’t released, it is ready
for release.

Java Messaging Service (JMS) The Java Messaging Service (JMS) API is
a messaging standard that enables application components based on the
Java 2 Platform, Enterprise Edition (J2EE) to create, send, receive, and read
messages.

Legacy System A legacy system is one that does not have any (or few) auto-
mated regression tests. Introducing changes in legacy code, or refactoring it,
might be risky because there are no tests to catch unintended changes in sys-
tem behavior.

496 GLOSSARY

Multipurpose Internet Mail Extensions (MIME) Multipurpose Internet
Mail Extensions, or MIME, extend the format of Internet mail to enable
non-textual messages, multipart message bodies, and non-US-ASCII textual
messages and headers.

Mock Object A mock object simulates the responses of an existing object. It
helps with designing and testing interactions between objects, replacing a
real component so that a test can verify its indirect outputs.

Product Backlog Product Backlog is a Scrum term for the prioritized mas-
ter list of all functionality desired in the product. This backlog grows over
time as the organization thinks of new features they may need.

Product Owner Product Owner is a Scrum term for the person responsi-
ble for prioritizing the product backlog, or stories. He or she is typically
someone from a marketing role or a key business expert involved with
development.

Quality Assurance (QA) Team Quality Assurance, or QA, can be defined as
actions taken to ensure compliance with a quality standard. In software de-
velopment, the term “QA Team” is often used to refer to the team that does
software testing. Test teams (see Test Team) provide stakeholders with infor-
mation related to the quality of the software product. They perform activities
to learn how the system under test should behave and verify that it behaves as
expected. In agile development, these activities are fully integrated with de-
velopment activities. Testers are often part of the development team along
with everyone else involved in developing the software.

Production Code Production code is the code for the system that is, or will
be, used in production, as distinguished from the code that is written to test
it. Test code invokes or operates on production code to verify its behavior.

Refactoring Refactoring is changing code, without changing its functional-
ity, to make it more maintainable, easier to read, easier to test, or easier to
extend.

Regression Test A regression test verifies that the behavior of the system un-
der test hasn’t changed. Regression tests are usually written as unit tests to
drive coding or acceptance tests to define desired system behavior. Once the
tests pass, they become part of a regression test suite, to guard against unin-
tended changes being introduced. Regression tests should be automated to
ensure continual feedback.

GLOSSARY 497

Release Candidate A release candidate is a version or build of the product
that can potentially be released to production. The release candidate may un-
dergo further testing or be augmented with documentation or other materials.

Return on Investment (ROI) Return on investment, or ROI, is a term bor-
rowed from the world of financial investments and is a measure of the effi-
ciency of an investment. ROI can be calculated in different ways, but it’s
basically the difference between the gain from an investment and the cost of
that investment, divided by the cost of that investment. In testing, ROI is the
benefit gained from a testing activity such as automating a test, weighed
against the cost of producing and maintaining that test or activity.

SOAP SOAP is a protocol for exchanging XML-based messages over net-
works, normally using HTTP/HTTPS. It forms the foundation layer of the
web services protocol stack, providing a basic messaging framework upon
which abstract layers can be built. A common SOAP messaging pattern is the
Remote Procedure Call (RPC) pattern, in which the client network node
sends a request message to the server node, and the server immediately sends
a response to the client.

Story A user story is a short description of functionality told from the per-
spective of the user that is valuable to either the user or the customer team.
Stories are traditionally written on index cards. The card typically contains a
one-line description of the feature. For example, “As a shopper, I can put
items in my shopping cart so that I can check out with them later” is a story.
Cards are only useable in combination with subsequent conversations be-
tween the customer team and the development team and some verification
that the story has been implemented through writing and running tests.

Story Test A story test defines expected behavior for the code to be delivered
by the story. Story tests may be business-facing, specifying the functional re-
quirements, or technology-facing, such as security or performance tests.
These tests are used to guide development as well as to verify the delivered
code. Most agile practitioners use the term “story test” synonymously with
“acceptance test,” although the term “acceptance test” might be used for tests
that verify behavior at a higher level than one story.

Story Board The story board, also called the task board, is used to track
the work the team does during an iteration. Task cards, which may be
color-coordinated for the type of task, are written for each story. These
cards, along with a visual cue of some kind, provide an easy mechanism for
seeing the current status of an iteration’s progress. It may use columns or

498 GLOSSARY

different colored stickers on cards for different states such as “To do,” “Work
in Progress,” “Verify,” and “Done.” The story board might be a physical board
on a wall or a virtual online board.

Task Tasks are pieces of work needed to finish a story. A task might be action
needed to implement a small piece of a story, or it might be for building a bit
of infrastructure, or testing that encompasses more than one story. Generally
it should represent a day or less of work.

Technical Debt Ward Cunningham first introduced this metaphor. When a
team produces software without using good practices such as TDD, continu-
ous integration, and refactoring, it may incur technical debt. Like financial
debt, technical debt accrues interest that will cost the team more at a later
date. Sometimes this debt may be worthwhile, such as to take advantage of a
sudden business opportunity. Usually, though, technical debt compounds
and slows the team’s velocity. Less and less business value can be produced in
each iteration because the code lacks a safety net of automated regression
tests or has become difficult to understand and maintain.

Test Double A test double is any object or component that’s installed in
place of the real component for the express purpose of running a test. Test
doubles include dummy objects, mock objects, test stubs, and fake objects.

Test-Driven Development (TDD) In test-driven development, the pro-
grammer writes and automates a small unit test before writing the small
piece of code that will make the test pass. The production code is made to
work one test at a time.

Test-First Development In test-first development, tests are written in ad-
vance of the corresponding production code, but the code is not necessarily
made to work one test at a time. Customer or story tests may be used in test-
first development as well as unit tests.

Test Stub A test stub is an object that replaces a real component needed by
the system under test with a test-specific object that feeds desired indirect in-
puts into the system under test. This enables the test to verify logic indepen-
dently of the other components.

Test Team A test team performs activities that help define and subsequently
verify the desired behavior of the system under test. The test team provides
information to the stakeholders about the external quality of the system, the
risks that may be present, and potential risk mitigation strategies. In agile de-

GLOSSARY 499

velopment, these activities are fully integrated with development activities.
Testers are often part of the development team along with everyone else in-
volved in developing the software.

Tester A tester provides information to stakeholders about the software be-
ing developed. A tester helps customers define functional and nonfunc-
tional requirements and quality criteria, and helps turn these into tests that
guide development and verify desired behavior. Testers perform a wide vari-
ety of activities related to delivering high-quality software, such as test auto-
mation and exploratory testing. In agile development, everyone on the
development team performs testing activities. Team members who identify
themselves as testers work closely with other members of both the developer
and customer teams.

Theme A theme is the same as an epic or feature. It is a piece of functionality
described by the customer and placed in the product backlog to be broken up
into stories that are sized and estimated.

Unit Test A unit test verifies the behavior of a small part of the overall sys-
tem. It may be as small as a single object or method that is a consequence of
one or more design decisions.

Velocity A development team’s velocity is the amount of value it delivers in
each iteration, measured in story points, ideal days, or hours. Generally, only
completed stories are included in the velocity. Velocity is helpful to the busi-
ness in planning for future features and releases. Agile teams use their veloc-
ity for the previous iteration to help determine the amount of work they can
take on in the next iteration.

Web Service Description Language (WSDL) Web Service Description Lan-
guage (WDSL) is an XML format for describing network services as a set of
endpoints operating on messages containing either document-oriented or
procedure-oriented information.

This page intentionally left blank

501

BIBLIOGRAPHY

BOOKS, ARTICLES, PAPERS, AND BLOG POSTINGS

Agile Alliance. “Principles Behind the Agile Manifesto,” www.agilemanifesto
.org/principles.html, 2001.

Alles, Micah, David Crosby, Carl Erickson, Brian Harleton, Michael Marsiglia,
Greg Pattison, and Curt Stienstra. “Presenter First: Organizing Complex GUI
Applications for Test-Driven Development,” Agile 2006, Minneapolis, MN,
July 2006.

Ambler, Scott. Agile Database Techniques: Effective Strategies for the Agile Soft-
ware Developer, Wiley, 2003.

Astels, David. Test-Driven Development: A Practical Guide, Prentice Hall, 2003.

Bach, James. “Exploratory Testing Explained,” www.satisfice.com/articles/
et-article.pdf, 2003.

Bach, Jonathan. “Session-Based Test Management,” Software Testing and
Quality Engineering Magazine, November, 2000, www.satisfice.com/articles/
sbtm.pdf.

Beck, Kent. Extreme Programming Explained: Embrace Change, Addison-
Wesley, 2000.

Beck, Kent, and Andres, Cynthia. Extreme Programming Explained: Embrace
Change. 2nd Edition, Addison-Wesley, 2004.

Berczuk, Stephen and Brad Appleton. Software Configuration Management
Patterns: Effective Teamwork, Practical Integration, Addison-Wesley, 2003.

502 BIBLIOGRAPHY

Bolton, Michael. “Testing Without a Map,” Better Software, January 2005,
www.developsense.com/articles/Testing%20Without%20A%20Map.pdf.

Bos, Erik and Christ Vriens. “An Agile CMM,” in Extreme Programming and
Agile Methods–XP/Agile Universe 2004, 4th Conference on Extreme Pro-
gramming and Agile Methods, Calgary, Canada, August 15–18, 2004, Pro-
ceedings, ed. Carmen Zannier, Hakan Erdogmus, Lowell Lindstrom, pp.
129–138, Springer, 2004.

Boutelle, Jonathan. “Usability Testing for Agile Development,” www
.jonathanboutelle.com/mt/archives/2005/08/usability_testi_1.html, 2005.

Brown, Titus. “The (Lack of) Testing Death Spiral,” http://ivory.idyll.org/
blog/mar-08/software-quality-death-spiral.html, 2008.

Buwalda, Hans. “Soap Opera Testing,” Better Software Magazine, February
2004, www.logigear.com/resources/articles_lg/soap_opera_testing.asp.

Clark, Mike. Pragmatic Project Automation: How to Build, Deploy and Moni-
tor Java Apps, The Pragmatic Programmers, 2004.

Cohn, Mike. User Stories Applied for Agile Software Development, Addison-
Wesley, 2004.

Cohn, Mike. Agile Estimating and Planning, Prentice Hall, 2005.

Crispin, Lisa and Tip House. Testing Extreme Programming, Addison-Wesley
2002.

Crispin, Lisa. Articles “Hiring an Agile Tester,” “An Agile Tool Selection Strat-
egy for Web Testing Tools,” “Driving Software Quality: How Test-Driven De-
velopment Impacts Software Quality,” http://lisa.crispin.home.att.net.

DeMarco, Tom and Timothy Lister. Managing Risk on Software Projects, Dor-
set House, 2003.

Derby, Esther and Larsen, Diana. Agile Retrospectives: Making Good Teams
Great, Pragmatic Bookshelf, 2006.

Derby, Esther and Rothman, Johanna. Behind Closed Doors: Secrets of Great
Management, Pragmatic Bookshelf, 2006.

BIBLIOGRAPHY 503

De Souza, Ken. “A tester in developer’s clothes” blog, http://kendesouza
.blogspot.com.

Dustin, Elfriede, Chris Wysopal, Lucas Nelson, and Dino Dia Zovi. The Art of
Software Security Testing: Identifying Software Security Flaws, Symantec Press,
2006.

Dustin, Elfriede. “Teamwork Tackles the Quality Goal,” Software Test & Per-
formance, Volume 2, Issue 200, March 2005.

Duvall, Paul, Steve Matyas, and Andrew Glover. Continuous Integration: Im-
proving Software Quality and Reducing Risk, Addison-Wesley, 2007.

Eckstein, Jutta. Agile Software Development in the Large: Diving Into the Deep,
Dorset House, 2004.

Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Soft-
ware, Addison-Wesley, 2003.

Feathers, Michael. Working Effectively with Legacy Code, Prentice Hall, 2004.

Freeman, Steve and Nat Pryce. “Mock Objects,” www.mockobjects.com.

Fowler, Martin. “Continuous Integration,” http://martinfowler.com/articles/
continuousIntegration.html, 2006.

Fowler, Martin. “StranglerApplication,” www.martinfowler.com/bliki/
StranglerApplication.html, 2004.

Fowler, Martin, “TechnicalDebt,” http://martinfowler.com/bliki/
TechnicalDebt.html, 2003.

Gårtner, Markus, Blog, http://blog.shino.de.

Galen, Robert. Software Endgames: Eliminating Defects, Controlling Change,
and the Countdown to On-Time Delivery, Dorset House, 2005.

Ghiorghiu, Grig. “Performance vs. load vs. stress testing,” http://
agiletesting.blogspot.com/2005/02/performance-vs-load-vs-stress-
testing.html, 2005.

Ghirghiu, Grig. “Agile Testing” blog, http://agiletesting.blogspot.com.

504 BIBLIOGRAPHY

Hagar, Jon. Software Testing Papers, www.swtesting.com/hagar_papers_
index.html.

Hendrickson, Elisabeth. “Tester Developers, Developer Testers,” http://
testobsessed.com/2007/01/17/tester-developers-developer-testers/, 2007.

Hendrickson, Elisabeth. “Test Heuristics Cheat Sheet,” http://testobsessed.com/
wordpress/wp-content/uploads/2007/02/testheuristicscheatsheetv1.pdf,
2007.

Hendrickson, Elisabeth. “Agile-Friendly Test Automation Tools/Frame-
works,” http://testobsessed.com/2008/04/29/agile-friendly-test-automation-
toolsframeworks, 2008.

Highsmith, Jim. Agile Project Management: Creating Innovative Products,
Addison-Wesley, 2004.

Hunt, Andrew and David Thomas. The Pragmatic Programmer: From Jour-
neyman to Master, Addison-Wesley, 1999.

Kaner, Cem, James Bach, and Bret Pettichord. Lessons Learned in Software
Testing, Wiley, 2001.

Kerth, Norman. Project Retrospectives: A Handbook for Team Reviews, Dorset
House, 2001.

Kniberg, Henrik. “How to Catch Up on Test Automation,” http://
blog.crisp.se/henrikkniberg/2008/01/03/1199386980000.html, 2008.

Kniberg, Henrik. Scrum and XP from the Trenches, Lulu.com, 2007.

Koenig, Dierk, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet.
Groovy in Action, Manning Publications, 2007.

Kohl, Jonathan.“Man and Machine,” Better Software magazine, December
2007.

Kohl, Jonathan. Blog and articles, www.kohl.ca/.

Louvion, Christophe. Blog, www.runningagile.com.

BIBLIOGRAPHY 505

Manns, Mary Lynn and Linda Rising. Fearless Change: Patterns for Introduc-
ing New Ideas, Addison-Wesley, 2004.

Marick, Brian. Everyday Scripting with Ruby: For Teams, Testers and You,
Pragmatic Bookshelf, 2007.

Marick, Brian, “My Agile Testing Project,” www.exampler.com/old-blog/ 2003/
08/21/, 2003.

Marick, Brian. “An Alternative to Business-Facing TDD,” www.exampler .com/
blog/category/aa-ftt, 2008.

Marick, Brian. Blog and articles on agile testing, http://exampler.com.

Marcano, Antony. Blog, www.testingreflections.com.

Meszaros, Gerard. XUnit Test Patterns: Refactoring Test Code, Addison-
Wesley, 2007.

Meszaros, Gerard and Janice Aston. “Adding Usability Testing to an Agile
Project,” Agile 2006, Minneapolis, MN, 2006, http://papers.gerardmeszaros
.com/AgileUsabilityPaper.pdf.

Meszaros, Gerard, Ralph Bohnet, and Jennitta Andrea. “Agile Regression
Testing Using Record & Playback,” XP/Agile Universe 2003, New Orleans,
LA, 2003, http://agileregressiontestpaper.gerardmeszaros.com.

Meszaros, Gerard. “Using Storyotypes to Split Bloated XP Stories,” http://
storyotypespaper.gerardmeszaros.com.

Mugridge, Rick and Ward Cunningham. Fit for Developing Software: Frame-
work for Integrated Tests, Prentice Hall, 2005.

Newkirk, James and Alexei Vorontsov. Test-Driven Development in Microsoft
.NET, Microsoft Professional, 2004.

Nielsen, Jakob. “Time Budgets for Usability Sessions,” www.useit.com/
alertbox/usability_sessions.html, 2005.

North, Dan. “Introducing BDD,” http://dannorth.net/introducing-bdd, 2006.

506 BIBLIOGRAPHY

Patterson, Kerry, Joseph Gernny, Ben McMillan, Al Switzler and Stephen R.
Covey. Crucial Conversations: Tools for Talking when the Stakes are High,
McGraw-Hill, 2002.

Patton, Jeff. “Test Software Before You Code,” StickyMinds.com, August 2006,
www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=
COL&ObjectId=11104.

Patton, Jeff. “Holistic Agile Product Design and Development,” www.ag-
ileproductdesign.com/blog/agile_product_development.html, 2006.

Pols, Andy. “The Perfect Customer,” www.pols.co.uk/archives/category/
testing, 2008.

Pettichord, Bret. “Homebrew Test Automation,” www.io.com/~wazmo/
papers/homebrew_test_automation_200409.pdf, 2004.

Pettichord, Bret. “Seven Steps to Test Automation Success,” www.io .com/
~wazmo/papers/seven_steps.html, 2001.

Poppendieck, Mary and Tom Poppendieck. Implementing Lean Software
Development: From Concept to Cash, Addison-Wesley, 2006.

Poppendieck, Mary and Tom Poppendieck. Lean Software Development: An
Agile Toolkit, Addison-Wesley, 2003.

Rainsberger, J. B. JUnit Recipes: Practical Methods for Programmer Testing,
Manning Publications, 2004.

Rasmusson, Jonathan. “Introducing XP into Greenfield Projects: Lessons
Learned,” IEEE Software, 2003, http://rasmusson.files.wordpress.com/2008/
01/s3021.pdf.

Robbins, Stephen and Tim Judge. Essentials of Organizational Behavior, 9th
Edition, Prentice Hall, 2007.

Schwaber, Ken. Agile Project Management with Scrum, Microsoft Press, 2004.

Shore, James and Shane Warden. The Art of Agile Development, O’Reilly Me-
dia, 2007.

BIBLIOGRAPHY 507

Soni, Mukesh. “Defect Prevention: Reducing Costs and Enhancing Quality,”
iSixSigma, http://software.isixsigma.com/library/content/c060719b.asp.

Sumrell, Megan. “’Shout-Out’ Shoebox – Boosting Team Morale,” http://
megansumrell.wordpress.com/2007/08/27/shout-out-shoebox-boosting-
team-morale, 2007.

Sutherland, Jeff, Carsten Ruseng Jakobsen, and Kent Johnson. “Scrum
and CMMI Level 5: The Magic Potion for Code Warriors,” Agile 2007,
Washington, DC, 2007, http://jeffsutherland.com/scrum/
Sutherland-ScrumCMMI6pages.pdf.

Tabaka, Jean. Collaboration Explained: Facilitation Skills for Software Project
Leaders, Addison-Wesley, 2006.

Thomas, Mike. “Strangling Legacy Code,” Better Software magazine, October
2005, http://samoht.com/wiki_downloads/StranglingLegacyCodeArticle.pdf.

Tholfsen, Mike. “The Rise of the Customer Champions,” STAREAST,
May 7–9, 2008.

Voris, John. ADEPT AS400 Displays for External Prototyping and Testing,
www.AdeptTesting.org.

Wake, Bill. “XP Radar Chart,” http://xp123.com/xplor/xp0012b/index.shtml,
2001.

Vriens, Christ. “Certifying for CMM Level 2 and ISO9001 with XP@Scrum,”
in ADC 2003: Proceedings of the Agile Development Conference, 25–28 June
2003, Salt Lake City, UT, USA, 120–124, IEEE, 2003.

TOOL REFERENCES

Abbot Java GUI Test Framework, http://abbot.sourceforge.net/doc/
overview.shtml.

Adzik, Gojko. DbFit: Test-driven Database Development, http://gojko.net/
fitnesse/dbfit/.

Faught, Danny. “Test Tools List,” http://testingfaqs.org, 2008.

508 BIBLIOGRAPHY

Canoo WebTest, Open Source Tool for Automated Testing of Web Applica-
tions, http://webtest.canoo.com.

easyb, Behavior Driven Development Framework for the Java Platform,
www.easyb.org/.

Fit, Framework for Integrated Test, http://fit.c2.com.

JUnit, Resources for Test-Driven Development, www.junit.org.

JUnitPerf, JUnit Test Decorators for Performance and Scalability Testing,
http://clarkware.com/software/JUnitPerf.html.

FitNesse, Fully Integrated Standalone Wiki and Acceptance Testing Frame-
work, www.fitnesse.org.

Hower, Rick, Software QA and Testing Tools Info, www.softwareqatest.com/
qattls1.html.

NUnit, Unit-testing Framework for .NET Languages, http://nunit.org/
index.php.

Open Source Software Testing Tools, News and Discussion. www
.opensourcetesting.org/.

RpgUnit, RPG Regression Testing Framework, www.RPGunit.org.

Selenium, Web Application Testing System, http://selenium.openqa.org.

soapUI, Web Services Testing Tool, www.soapui.org.

Source Configuration Management, http://better-scm.berlios.de.

Subversion, Open Source Version Control System, http://subversion.tigris.org/.

Unit Testing Frameworks. http://en.wikipedia.org/wiki/List_of_unit_
testing_frameworks.

Watir, Web Application Testing in Ruby, http://wtr.rubyforge.org, http://
watircraft.com.

509

INDEX

A
Abbot GUI test tool, 127
Acceptance tests. See also Business-facing tests

definition, 501
Remote Data Monitoring system example,

245
UAT (user acceptance testing) compared

with, 130
Ad hoc testing, 198
Adaptability, skills and, 39–40
ADEPT (AS400 Displays for External

Prototyping and Testing), 117–118
Advance clarity

customers speaking with one voice,
373–374

determining story size, 375–376
gathering all viewpoints regarding

requirements, 374–375
overview of, 140–142, 373

Advance preparation
downside of, 373
how much needed, 372–373

Agile development
Agile manifesto and, 3–4
barriers to. See Barriers to adopting agile

development
team orientation of, 6

Agile Estimating and Planning (Cohn), 331, 332
Agile manifesto

people focus, 30
statement of, 4
value statements in, 21

Agile principles. See Principles, for agile
testers

Agile testers. See also Testers
agile testing mind-set, 482–483
definition, 4
giving all team members equal weight, 31
hiring, 67–69
what they are, 19–20

Agile testing
definition, 6
as mind-set, 20–21
what we mean, 4–7

Agile values, 3–4
Alcea’s FIT IssueTrack, 84
Alpha tests, 466–467
ant, 284

as build tool, 126
continual builds and, 175, 291

AnthillPro, 126
ANTS Profiler Pro, 234
Apache JMeter. See JMeter
API-layer functional test tools, 168–170

Fit and FitNesse, 168–170
overview of, 168
testing web Services, 170

API testing
automating, 282
overview of, 205–206

APIs (application programming interfaces),
501

Appleton, Brad, 124
Application under test (AUT), 246

510 INDEX

Applications
integration testing with external applications,

459
Remote Data Monitoring system example,

242–243
Architecture

incremental approach to testing, 114
layered, 116
Quadrant 1 tests and, 99
scalability and, 104, 221
testable, 30, 115, 182, 184, 267

AS400 Displays for External Prototyping and
Testing (ADEPT), 117–118

Assumptions, hidden
agile testers response to, 25
failure to detect, 32
questions that uncover, 136
worst-case scenarios and, 334

Attitude
agile testing mind-set, 482–483
barriers to adopting agile development, 48
vs. skills, 20

Audits, compliance with audit requirements,
89–90

AUT (application under test), 143, 225, 246,
317

Authorization, security testing and, 224
Automated regression testing

key success factors, 484
release candidates and, 458
as a safety net, 261–262

Automated test lists, test plan alternatives,
353–354

Automation
code flux and, 269
of deployment, 232
driving development with, 262–263
of exploratory testing, 201
fear of, 269–270
feedback from, 262
freeing people for other work, 259–261
of functional test structure, 245–247
home-brewed test, 175
investment required, 267–268

learning curve, 266–267
legacy code and, 269
maintainability and, 227–228
manual testing vs., 258–259
obstacles to, 264–265
old habits and, 270
overview of, 255
programmers’ attitude regarding,

265–266
reasons for, 257–258
responding to change and, 29
ROI and, 264
task cards and, 394–395
testability and, 149–150
tests as documentation, 263–264

Automation strategy
agile coding practices and, 303–304
applying one tool at a time, 312–313
data generation tools, 304–305
database access and, 306–310
design and maintenance and, 292–294
developing, 288–289
identifying tool requirements, 311–312
implementing, 316–319
iterative approach, 299–300
keep it simple, 298–299
learning by doing, 303
managing automated tests, 319
multi-layered approach to, 290–292
organizing test results, 322–324
organizing tests, 319–322
overview of, 273
principles, 298
record/playback tools and, 294, 296–297
starting with area of greatest pain,

289–290
taking time to do it right, 301–303
test automation pyramid, 276–279
test categories, 274–276
tool selection, 294–298, 313–316
understanding purpose of tests and, 310–311
what can be automated, 279–285
what might be difficult to automate,

287–288

INDEX 511

what should not be automated, 285–287
whole team approach, 300–301

Automation tools, 164–177
API-layer functional test tools, 168–170
builds and, 126
GUI test tools, 170–176
overview of, 164–165
unit-level test tools, 165–168
web services test tool, 170

B
Bach, James, 195, 200, 212
Bach, Jonathan, 201
Back-end testing

behind the GUI, 282
non-UI testing, 204–205

Bamboo, 126
Barriers to adopting agile development, 44–49

conflicting or multiple roles, 45
cultural differences among roles, 48–49
lack of training, 45
lack of understanding of agile concepts,

45–48
loss of identity, 44–45
overview of, 44
past experience and attitudes, 48

Baselines
break-test baseline technique, 363
performance, 235–237

Batch
files, 251
processing, 345
scheduling process, 182

BDD (Behavior-driven development)
easyb tool, 166–168
tools for Quadrant 1 tests, 127

Beck, Kent, 26, 99
Benander, Mark, 51
Benchmarking, 237
Berczuk, Stephen, 124
Beta testing, 466–467
Big picture

agile testers focus on, 23
high-level tests and examples, 397–402

key success factors, 490–491
peril of forgetting, 148
regression tests and, 434

Bolton, Michael, 195
Bos, Erik, 114
Boundary conditions

API testing and, 205
automation and, 11
data generation tools and, 304
identifying test variations, 410
writing test cases for, 137

Boyer, Erika, 140, 163, 372, 432
Brainstorming

automation giving testers better work,
260

prior to iteration, 370, 381
quadrants as framework for, 253
taking time for, 301
testers, 121

Break-test baseline technique, 363
Browsers, compatibility testing and, 230
Budget limits, 55
Bug tracking. See Defect tracking
Bugs. See Defects
Build

automating, 280–282
challenging release candidate builds, 473
definition, 501
incremental, 178–179
speeding up, 118–119

Build automation tools, 126, 282
Build/Operate/Check pattern, 180
Build tools, 126
BuildBeat, 126
Business analysts, 374
Business expert role

agreement regarding requirements, 428,
430

common language and, 134, 291, 414
on customer team, 6–7
iteration demo and, 443
language of, 291
Power of Three and, 482
tools geared to, 134

512 INDEX

Business-facing tests
agile testing as, 6
Quadrants 2 & 3, 97–98
technology-facing tests compared with, 120

Business-facing tests, critiquing the product
(Quadrant 3), 189–215

acceptance tests, 245
API testing, 205–206
demonstrations, 191–192
emulator tools, 213–214
end-to-end tests, 249–250
exploratory testing, 195–202, 248–249
generating test data, 212
GUI testing, 204
monitoring tools, 212–213
overview of, 189–191
reports, 208–210
scenario testing, 192–195
session-based testing, 200–201
setting up tests, 211–212
simulator tools, 213
tools for exploratory testing, 210–211
usability testing, 202–204
user acceptance testing, 250
user documentation, 207–208
web services testing, 207

Business-facing tests, supporting team
(Quadrant 2), 129–151

advance clarity, 140–142
automating functional tests, 245–247
common language and, 134–135
conditions of satisfaction and, 142–143
doneness, 146–147
driving development with, 129–132
eliciting requirements, 135–140
embedded testing, 248
incremental approach, 144–146
requirements quandary and, 132–134
ripple effects, 143–144
risk mitigation and, 147–149
testability and automation, 149–150
toolkit for. See Toolkit (Quadrant 2)
web services testing, 247–248

Business impact, 475–476

Business value
adding value, 31–33
as goal of agile development, 5–8, 69, 454
metrics and, 75
release cycles and, 3
role, function, business value pattern, 155
team approach and, 16

Busse, Mike, 106, 235, 284, 313
Buwalda, Hans, 193

C
Canonical data, automating databases and,

308–309
Canoo WebTest

automating GUI tests, 184, 186
GUI regression test suite, 291
GUI smoke tests, 300
GUI test tools, 174–175
organizing tests and, 320
scripts and, 320
XML Editor for, 125

Capability Maturity Model Integration
(CMMI), 90–91

Capture-playback tool, 267
Celebrating successes

change implementation and, 50–52
iteration wrap up and, 449–451

Chandra, Apurva, 377
Chang, Tae, 53–54
Change

celebrating successes, 50–52
giving team ownership, 50
introducing, 49
not coming easy, 56–57
responsiveness to, 28–29
talking about fears, 49–50

Checklists
release readiness, 474
tools for eliciting examples and requirements,

156
CI. See Continuous integration (CI)
CI Factory, 126
CMMI (Capability Maturity Model

Integration), 90–91

INDEX 513

Co-location, team logistics and, 65–66
Coaches

adjusting to agile culture and, 40
learning curve and, 266
providing encouragement, 69
skill development and, 122
training and, 45–46

Cockburn, Alistair, 115
Code

automation and code flux, 269
automation and legacy code, 269
automation strategy and, 303–304
documentation of, 251
standards, 227
writing testable, 115

Code coverage, release metrics, 360–364
Coding and testing, 405–441

adding complexity, 407
alternatives for dealing with bugs, 424–428
choosing when to fix bugs, 421–423
collaborating with programmers, 413–414
dealing with bugs, 416–419
deciding which bugs to log, 420–421
driving development and, 406
facilitating communication, 429–432
focusing on one story, 411–412
identifying variations, 410
iteration metrics, 435–440
media for logging bugs, 423–424
overview of, 405
Power of Three for resolving differences in

viewpoint, 411
regression testing and, 432–434
resources, 434–435
risk assessment, 407–409
as simultaneous process, 409–410,

488–489
starting simple, 406, 428–429
talking to customers, 414–415
tests that critique the product, 412–413

Cohn, Mike, 50, 155, 276, 296, 331, 332
Collaboration

with customers, 396–397
key success factors, 489–490

with programmers, 413–414
whole team approach, 15–16

Collino, Alessandro, 103, 363
Communication

common language and, 134–135
with customer, 140, 396–397
DTS (Defect Tracking System) and, 83
facilitating, 23–25, 429–432
product delivery and, 462–463
size as challenge to, 42–43
between teams, 69–70
test results, 357–358

Comparisons, automating, 283
Compatibility testing, 229–230
Component tests

automating, 282
definition, 501
supporting function of, 5

Conditions of satisfaction
business-facing tests and, 142–143
definition, 501–502

Context-driven testing
definition, 502
quadrants and, 106–107

Continuous build process
failure notification and, 112
feedback and, 119
FitNesse tests and, 357
implementing, 114
integrating tools with, 175, 311
source code control and, 124
what testers can do, 121

Continuous feedback principle, 22
Continuous improvement principle, 27–28
Continuous integration (CI)

automating, 280–282
as core practice, 486–487
installability and, 231–232
Remote Data Monitoring system example, 244
running tests and, 111–112

Conversion, data migration and, 460–461
Core practices

coding and testing as one process, 488–489
continuous integration, 486–487

514 INDEX

Core practices, continued
incremental approach, 488
overview of, 486
synergy between practices, 489
technical debt management, 487–488
test environments, 487

Courage, principles, 25–26, 71
Credibility, building, 57
Critiquing the product

business facing tests. See Business-facing tests,
critiquing the product (Quadrant 3)

technology-facing tests. See
Technology-facing tests, critiquing the
product (Quadrant 4)

CrossCheck, testing Web Services, 170
CruiseControl, 126, 244, 291
Cultural change, 37. See also Organizations
Cunningham, Ward, 106, 168, 506
Customer expectations

business impact and, 475–476
production support, 475

Customer-facing test. See Business-facing tests
Customer support, DTS (Defect Tracking

System) and, 82
Customer team

definition, 502
interaction between customer and developer

teams, 8
overview of, 7

Customer testing
Alpha/Beta testing, 466–467
definition, 502
overview of, 464
UAT (user acceptance testing), 464–466

Customers
collaborating with, 396–397, 489–490
considering all viewpoints during iteration

planning, 388–389
delivering value to, 22–23
importance of communicating with, 140,

414–415, 444
iteration demo, 191–192, 443–444
participation in iteration planning,384–385

relationship with, 41–42
reviewing high-level tests with, 400
speaking with one voice, 373–374

CVS, source code control and, 124

D
Data

automating creation or setup, 284–285
cleanup, 461
conversion, 459–461
release planning and, 348
writing task cards and, 392

Data-driven tests, 182–183
Data feeds, testing, 249
Data generation tools, 304–305
Data migration, automating, 310, 460
Databases

avoiding access when running tests, 306–310
canonical data and automation, 308–309
maintainability and, 228
product delivery and updates, 459–461
production-like data and automation,

309–310
setting up/tearing down data for each

automated test, 307–308
testing data migration, 310

De Souza, Ken, 223
Deadlines, scope and, 340–341
Defect metrics

overview of, 437–440
release metrics, 364–366

Defect tracking, 79–86
DTS (Defect Tracking System), 79–83
keeping focus and, 85–86
overview of, 79
reasons for, 79
tools for, 83–85

Defect Tracking System. See DTS (Defect
Tracking System)

Defects
alternatives for dealing with bugs,

424–428
choosing when to fix bugs, 421–423

INDEX 515

dealing with bugs, 416–419
deciding which bugs to log, 420–421
media for logging bugs, 423–424
metrics and, 79
TDD (test-driven development) and, 490
writing task cards and, 391–392
zero bug tolerance, 79, 418–419

Deliverables
“fit and finish” deliverables, 454
nonsoftware, 470
overview of, 468–470

Delivering product
Alpha/Beta testing, 466–467
business impact and, 475–476
communication and, 462–463
customer expectations, 475
customer testing, 464
data conversion and database updates, 459–461
deliverables, 468–470
end game, 456–457
installation testing, 461–462
integration with external applications, 459
nonfunctional testing and, 458–459
overview of, 453
packaging, 474–475
planning time for testing, 455–456
post-development testing cycles, 467–468
production support, 475
release acceptance criteria, 470–473
release management, 470, 474
releasing product, 470
staging environment and, 458
testing release candidates, 458
UAT (user acceptance testing), 464–466
what if it is not ready, 463–464
what makes a product, 453–455

Demos/demonstrations
of an iteration, 443–444
value to customers, 191–192

Deployment, automating, 280–282
Design

automation strategy and, 292–294
designing with testing in mind, 115–118

Detailed test cases
art and science of writing, 178
big picture approach and, 148–149
designing with, 401

Developer team
interaction between customer and

developer teams, 8
overview of, 7–8

Development
agile development, 3–4, 6
automated tests driving, 262–263
business-facing tests driving,

129–132
coding driving, 406
post-development testing cycles,

467–468
Development spikes, 381
Development team, 502
diff tool, 283
Distributed teams, 431–432

defect tracing systems, and, 82
physical logistics, 66
online high level tests for, 399
online story board for, 357
responding to change, 29
software-based tools to elicit examples and

requirements, and, 163–164
Documentation

automated tests as source of, 263–264
problems and fixes, 417
reports, 208–210
of test code, 251
tests as, 402
user documentation, 207–208

Doneness
knowing when a story is done, 104–105
multitiered, 471–472

Driving development with tests. See TDD
(test-driven development)

DTS (Defect Tracking System), 80–83
benefits of, 80–82
choosing media for logging bugs, 424
documenting problems and fixes, 417

516 INDEX

DTS (Defect Tracking System), continued
logging bugs and, 420
reason for not using, 82–83

Dymond, Robin, xxx
Dynamic analysis, security testing tools, 225

E
easyb behavior-driven development tool, 165–168
EasyMock, 127
Eclipse, 125, 316
Edge cases

identifying variations, 410
not having time for, 112
starting simple and then adding complexity,

406–407
test cases for, 137

Embedded system, Remote Data Monitoring
example, 248

Empowerment, of teams, 44
Emulator tools, 213–214
End game

Agile testing, 91
iteration, 14
product delivery and, 456–457
release and, 327

End-to-end tests, 249–250
Enjoyment, principle of, 31
Environment, test environment, 347–348
Epic. See also Themes

definition, 502
features becoming, 502
iterations in, 76, 329
planning, 252

ePlan Services, Inc., xli, 267
Errors, manual testing and, 259
Estimating story size, 332–338
eValid, 234
Event-based patterns, test design patterns, 181
Everyday Scripting with Ruby for Teams, Testers,

and You (Marick), 297, 303
Example-driven development, 378–380
Examples

for eliciting requirements, 136–137
tools for eliciting examples and requirements,

155–156

Executable tests, 406
Exploratory testing (ET)

activities, characteristics, and skills (Hagar),
198–200

attributes of exploratory tester,
201–202

automation of, 201
definition, 502–503
end game and, 457
explained (Bolton), 195–198
manual testing and, 280
monitoring tools, 212
overview of, 26, 195
Remote Data Monitoring system example,

248–249
session-based testing and, 200–201
setup, 211–212
simulators and emulators, 212–213
tests that critique the product, 412–413
tools for, 210–212
tools for generating test data, 212
what should not be automated, 286

External quality, business facing tests defining,
99, 131

External teams, 43, 457
Extreme Programming. See XP (Extreme

Programming)
Extreme Programming Explained (Beck),

26

F
Face-to-face communication, 23–25
Failover tests, 232
Failure, courage to learn from, 25
Fake objects, 115, 118, 306, 502–503
Fault tolerance, product delivery and, 459
Fear

barriers to automation, 269–270
change and, 49–50

Fearless Change (Manns and Rising), 121
Feathers, Michael, 117, 288
Features

defects vs., 417–418
definition, 502–503
focusing on value, 341

INDEX 517

Feedback
automated tests providing, 262
continuous feedback principle, 22
iterative approach and, 299–300
key success factors, 484–486
managing tests for, 323–324
Quadrant 1 tests and, 118–119

“Fit and finish” deliverables, 454
Fit (Framework for Integrated Test),

134–135
API-layer functional test tools, 168–169
automation test pyramid and, 278

FIT IssueTrack, Alcea, 83–84
FitNesse

advantages of, 163
API-layer functional test tools, 169–170
automating functional tests with, 30,

145
business-facing tests with, 154, 178
collaboration and, 164
continual builds and, 119, 357
data verification with, 287
doneness and, 472
encouraging use of, 122
examples and, 136, 169
feedback and, 323–324
file parsing rules illustrated with, 205
functional testing behind the GUI, 291,

300
home-grown scripts and, 305
JUnit compared with, 299
keywords or actions words for automating

tests, 182–183
manual vs. automated testing, 210
memory demands of, 306
organizing tests and, 319–320
overview of, 168–170
remote testing and, 432
“start, stop, continue” list, 446
support for source code control tools,

320
test automation pyramid and, 278
test cards and, 389–390
test cases as documentation, 402
test design and maintenance, 292

testing database layer with, 284
testing stories, 395
traceability requirements and, 88
user acceptance testing, 295
wikis and, 186

Fleisch, Patrick, 377, 440
Flow diagrams

scenario testing and, 194–195
tools for eliciting examples and requirements,

160–163
Fowler, Martin, 117
Framework for Integrated Test. See Fit

(Framework for Integrated Test)
Frameworks, 90–93
ftptt, 234
Functional analysts, 386
Functional testing

compatibility issues and, 230
definition, 502–503
end-to-end tests, 249–250
layers, 246
nonfunctional tests compared with, 225
Remote Data Monitoring system example,

245–247

G
Galen, Bob, 455–456, 471
Gärtner, Markus, 395, 476
Geographically dispersed teams

coping with, 376–378
facilitating communication and,

431–432
Gheorghiu, Grig, 225–226, 234
Glover, Andrew, 166
Greenfield projects

code testing and, 116
definition, 502–503

GUI (graphical user interface)
automation strategy and, 293
code flux and, 269
standards, 227

GUI smoke tests
Canoo WebTest and, 300
continual builds and, 119
defect metrics, 437

518 INDEX

GUI test tools, 170–176
Canoo Web Test, 174–175
“home-brewed” test automation tools,

175
open source test tools, 172
overview of, 170–171
record/playback tools, 171–172
Ruby with Watir, 172–174
Selenium, 174

GUI testing
API testing, 205–206
automating, 282–283, 295–296
automation test pyramid and, 278
GUI smoke tests, 119, 300, 437
overview of, 204
Web service testing, 207

H
Hagar, Jon, 198
Hardware

compatibility and, 229
cost of test environments, 487
functional testing and, 230
investing in automation and, 267
production environment and, 310
scalability and, 233
test infrastructure, 319
testing product installation, 462

Hendrickson, Elisabeth, 203, 315–316
High-level test cases, 397–402

mockups, 398–399
overview of, 397–398
reviewing with customers, 400
reviewing with programmers,

400–401
test cases as documentation, 402

Hiring a tester, 67–69
Holzer, Jason, 220, 448
Home-grown test tool

automation tools, 314
GUI test tools, 175
test results, 323

httperf, 234
Hudson, 126

I
IBM Rational ClearCase, 124
IDEs (Integrated Development Environments)

definition, 502–503
log analysis tools, 212
tools for Quadrant 1 tests, 124–126

“ility” testing
compatibility testing, 229–230
installability testing, 231–232
interoperability testing, 228–229
maintainability testing, 227–228
reliability testing, 230–231, 250–251
security testing, 223–227

Impact, system-wide, 342
Implementing Lean Software Development: From

Concept to Cash (Poppendieck), 74, 416
Improvement

approach to process improvement, 448–449
continuous improvement principle, 27–28
ideas for improvement from retrospectives,

447–449
Incremental development

building tests incrementally, 178–179
as core practice, 488
“ilities” tests and, 232
thin slices, small chunks, 144–146
traditional vs. agile testing, 12–13

Index cards, logging bugs on, 423
Infrastructure

Quadrant 1 tests, 111–112
test infrastructure, 319
test plans and, 346–347

Installability testing, 231–232
Installation testing, 461–462
Integrated Development Environments. See

IDEs (Integrated Development
Environments)

Integration testing
interoperability and, 229
product and external applications, 459

IntelliJ IDEA, 125
Internal quality

measuring internal quality of code, 99
meeting team standards, 366

INDEX 519

Quadrant 1 tests and, 111
speed and, 112

Interoperability testing, 228–229
Investment, automation requiring,

267–268
Iteration

automation strategy and, 299–300
definition, 502–503
demo, 443–444
life of a tester and, 327
pre-iteration activities. See Pre-iteration

activities
prioritizing stories and, 338
review, 415, 435–437
traditional vs. agile testing, 12–13

Iteration kickoff, 383–403
collaboration with customers, 396–397
considering all viewpoints, 385–389
controlling workload, 393
high-level tests and examples, 397–402
iteration planning, 383–384
learning project details, 384–385
overview of, 383
testable stories, 393–396
writing task cards, 389–392

Iteration metrics, 435–440
defect metrics, 437–440
measuring progress with, 435–437
overview of, 435
usefulness of, 439–440

Iteration planning
considering all viewpoints, 385–389
controlling workload, 393
learning project details, 384–385
overview of, 383–384
writing task cards, 389–392

Iteration review meeting, 415
Iteration wrap up, 443–451

celebrating successes, 449–451
demo of iteration, 443–444
ideas for improvement, 447–449
retrospectives, 444–445
“start, stop, continue” exercise for

retrospectives, 445–447

ITIL (Information Technology Infrastructure
Library), 90–91

J
JBehave, 165
JConsole, 234
JMeter

performance baseline tests, 235
performance testing, 223, 234, 313

JMS (Java Messaging Service)
definition, 502–503
integration with external applications and,

243
testing data feeds and, 249

JProfiler, 234
JUnit

FitNesse as alternative for TDD, 299
functional testing, 176
load testing tools, 234–235
unit test tools, 126, 165, 291

JUnitPerf, 234
Just in time development, 369. See also

Pre-iteration activities

K
Key success factors

agile testing mind-set, 482–483
automating regression testing, 484
big picture approach, 490–491
coding and testing as one process, 488–489
collaboration with customers, 489–490
continuous integration (CI), 486–487
feedback, 484–486
foundation of core practices, 486
incremental approach (thin slices, small

chunks), 488
overview of, 481
synergy between practices, 489
technical debt management, 487–488
test environments, 487
whole team approach, 482

Keyword-driven tests, 182–183
King, Joseph, 176
Knowledge base, DTS, 80–81

520 INDEX

Kohl, Jonathan, 201, 204, 211
König, Dierk, 320

L
Language, need for common, 134–135
Layered architecture, 116
Lean measurements, metrics, 74–75
Learning

automation strategy and, 303
continuous improvement principle, 27

Learning curve, automation and, 266–267, 303
Legacy code, 269
Legacy code rescue (Feathers), 117
Legacy systems

ccde, 269
definition, 502–503
logging bugs and, 421
testing, 117

Lessons Learned in Software Testing (Pettichord),
485

Lessons learned sessions, 383. See also
Retrospectives

Lightweight processes, 73–74
Lightweight test plans, 350
Load testing. See Performance and load testing
LoadRunner, 234
LoadTest, 234
Logistics, physical, 65–66
LogWatch tool, 212
Loss of identity, QA teams fearing, 44–45
Louvion, Christophe, 63

M
Maintainability testing, 227–228
Management, 52–55

advance clarity and, 373–374
cultural change and, 52–54
overview of, 52
providing metrics to, 440

Managers
cultural changes for, 52–54
how to influence testing, 122–123
speaking managerís language, 55

Manns, Mary Lynn, 121–122

Manual testing
automation vs., 258–259
peril of, 289

Marcano, Antony, 83, 426
Marick, Brian, 5, 24, 97, 134, 170, 203, 303
Martin, Micah, 169
Martin, Robert C., 169
Matrices

high-level tests and, 398–399
text matrices, 350–353

Maven, 126
McMahon, Chris, 260
Mean time between failure, reliability testing,

230
Mean time to failure, reliability testing, 230
Media, for logging bugs, 423–424
Meetings

demonstrations, 71, 192
geographically dispersed, 376
iteration kickoff, 372
iteration planning, 23–24, 244, 331, 384, 389
iteration review, 71, 415
pre-planning, 370–372
release planning, 338, 345
retrospective, 447
scheduling, 70
sizing process and, 336–337
standup, 177, 429, 462
team participation and, 32
test planning, 263

Memory leaks, 237–238
Memory management testing, 237–238
Meszaros, Gerald, 99, 111, 113, 138, 146, 182,

204, 291, 296, 430
Metrics, 74–79

code coverage, 360–364
communication of, 77–78
defect metrics, 364–366, 437–440
iteration metrics, 435–440
justifying investment in automation, 268
lean measurements, 74–75
overview of, 74
passing tests, 358–360
reasons for tracking defects, 52, 75–77, 82

INDEX 521

release metrics, 358
ROI and, 78–79
what not to do with, 77
XP radar charts, 47–48

Milestones, celebrating successes, 449–450
MIME (Multipurpose Internet Mail

Extensions)
definition, 504
testing data feeds and, 249

Mind maps, 156–158
Mind-set

agile testing as, 20–21
key success factors, 482–483
pro-active, 369–370

“Mini-waterfall” phenomenon, 46–47
Mock objects

definition, 504
risk alleviation and, 459
tools for implementing, 127
unit tests and, 114

Mock-ups
facilitating communication and, 430
high-level tests and, 398–399
stories and, 380
tools for eliciting examples and requirements,

160
Model-driven development, 398
Models

quality models, 90–93
UI modeling example, 399

Monitoring tools, 212–213, 235
Multi-layered approach, automation strategy,

290–292
Multipurpose Internet Mail Extensions

(MIME)
definition, 504
testing data feeds and, 249

N
Naming conventions, 227
Nant, 126
Navigation, usability testing and, 204
NBehave, 165
NeoLoad, 234

Nessus, vulnerability scanner, 226
.NET Memory Profiler, 234
NetBeans, 125
NetScout, 235
Non-functional testing. See also

Technology-facing tests, critiquing the
product (Quadrant 4)

delivering product and, 458–459
functional testing compared with, 225
requirements, 218–219
when to perform, 222

North, Dan, 165
NSpec, 165
NUnit, 126, 165

O
Oleszkiewicz, Jakub, 418
One-off tests, 286–287
Open source tools

agile open source test tools, 172–175
automation and, 314–315
GUI test tools, 172
IDEs, 124–125

OpenWebLoad, 234
Operating systems (OSs), compatibility testing

and, 230
Organizations, 37–44

challenges of agile development, 35
conflicting cultures, 43
customer relationships and, 41–42
overview of, 37–38
quality philosophy, 38–40
size and, 42–43
sustainable pace of testing and, 40–41
team empowerment, 44

OSs (operating systems), compatibility testing
and, 230

Ownership, giving team ownership, 50

P
Packaging, product delivery and, 474–475
Pair programming

code review and, 227
developers trained in, 61

522 INDEX

Pair programming, continued
IDEs and, 125
team approach and, 244

Pair testing, 413
Passing tests, release metrics, 358–360
PerfMon, 235
Perforce, 124
Performance and load testing

automating, 283
baselines, 235–237
memory management testing, 237–238
overview of, 234
product delivery and, 458
scalability testing, 233–234
test environment, 237
tools for, 234–235
when to perform, 223
who performs the test, 220–221

Performance, rewards and, 70–71
Perils

forgetting the big picture, 148
quality police mentality, 39
the testing crunch, 416
waiting for Tuesdayís build, 280
youíre not really part of the team, 32

Perkins, Steve, 156, 159, 373
PerlClip

data generation tools, 305
tools for generating test data, 212

Persona testing, 202–204
Pettichord, Bret, 175, 264, 485
Phased and gated development, 73–74, 129
Physical logistics, 65–66
Planning

advance, 43
iteration. See Iteration planning
release/theme planning. See Release planning
testing. See Test planning

PMO (Project Management Office), 440
Pols, Andy, 134
Ports and Adapters pattern (Cockburn), 115
Post-development testing, 467–468
Post-iteration bugs, 421
Pounder, 234

Power of Three
business expert and, 482
finding a common language, 430
good communication and, 33, 490
problem solving and, 24
resolving differences in viewpoint, 401, 411
whole team approach and, 482

Pragmatic Project Automation, 260
Pre-iteration activities, 369–382

advance clarity, 373
benefits of working on stories in advance,

370–372
customers speaking with one voice, 373–374
determining story size, 375–376
evaluating amount of advance preparation

needed, 372–373
examples, 378–380
gathering all viewpoints regarding

requirements, 374–375
geographically dispersed team and,

376–378
overview of, 369
prioritizing defects, 381
pro-active mindset, 369–370
resources, 381
test strategies and, 380–381

Pre-planning meeting, 370–372
Principles, automation

agile coding practices, 303–304
iterative approach, 299–300
keep it simple, 298–299
learning by doing, 303
overview of, 298
taking time to do it right, 301–303
whole team approach, 300–301

Principles, for agile testers
continuous feedback, 22
continuous improvement, 27–28
courage, 25–26
delivering value to customer, 22–23
enjoyment, 31
face-to-face communication, 23–25
keeping it simple, 26–27
overview of, 21–22

INDEX 523

people focus, 30
responsive to change, 28–29
self-organizing, 29–30

Prioritizing defects, 381
Prioritizing stories, 338–340
Pro-active mindset, 369–370
Product

business value, 31–33
delivery. See Delivering product
tests that critique (Q3 & Q4), 101–104
what makes a product, 453–455

Product owner
considering all viewpoints during iteration

planning, 386–389
definition, 504
iteration planning and, 384
Scrum roles, 141, 373
tools geared to, 134

Production
logging bugs and, 421
support, 475

Production code
automation test pyramid and, 277–278
definition, 504
delivering value to, 70
programmers writing, 48
source code control and, 434
synchronization with testing, 322
test-first development and, 113
tests supporting, 303–304

Production-like data, automating databases
and, 309–310

Professional development, 57
Profiling tools, 234
Programmers

attitude regarding automation, 265–266
big picture tests, 397
collaboration with, 413–414
considering all viewpoints during iteration

planning, 387–389
facilitating communication and, 429–430
reviewing high-level tests with, 400–401
tester-developer ratio, 66–67
testers compared with, 4, 5

training, 61
writing task cards and, 391

Project Management Office (PMO), 440
Projects, PAS example, 176–177
Prototypes

accessible as common language, 134
mock-ups and, 160
paper, 22, 138–139, 380, 400, 414
paper vs. Wizard of Oz type, 275
UI (user interface), 107

Pulse, 126
PyUnit unit test tool for Python, 126

Q
QA (quality assurance)

definition, 504
in job titles, 31
independent QA team, 60
interchangeable with “test,” 59
whole team approach, 39
working on traditional teams, 9

Quadrant 1. See Technology-facing tests,
supporting team (Quadrant 1)

Quadrant 2. See Business-facing tests,
supporting team (Quadrant 2)

Quadrant 3. See Business-facing tests, critiquing
the product (Quadrant 3)

Quadrant 4. See Technology-facing tests,
critiquing the product (Quadrant 4)

Quadrants
automation test categories, 274–276
business facing (Q2 & Q3), 97–98
context-driven testing and, 106–108
critiquing the product (Q3 & Q4), 104
managing technical debt, 106
overview of, 97–98
as planning guide, 490
purpose of testing and, 97
Quadrant 1 summary, 99
Quadrant 2 summary, 99–100
Quadrant 3 summary, 101–102
Quadrant 4 summary, 102–104
shared responsibility and, 105–106
story completion and, 104–105

524 INDEX

Quadrants, continued
supporting the team (Q1 & Q2), 100–101
technology facing (Q1 & Q4), 97–98

Quality
customer role in setting quality standards, 26
models, 90–93
organizational philosophy regarding,

38–40
Quality assurance. See QA (quality assurance)
Quality police mentality, 57
Questions, for eliciting requirements,

135–136

R
Radar charts, XP, 47–48
Rasmusson, Jonathan, 11
Record/playback tools

automation strategy and, 294, 296–297
GUI test tools, 171–172

Recovery testing, 459
Redundancy tests, 232
Reed, David, 171, 377
Refactoring

definition, 504
IDEs supporting, 124–126

Regression suite, 434
Regression tests, 432–434

automated regression tests as a safety net,
261–262

automating as success factor, 484
checking big picture, 434
definition, 504
exploratory testing and, 212
keeping the build “green,” 433
keeping the build quick, 433–434
logging bugs and, 420
regression suite and, 434
release candidates and, 458

Release
acceptance criteria, 470–473
end game, 327, 456–457
management, 474
product delivery, 470
what if it is not ready, 463–464

Release candidates
challenging release candidate builds,

473
definition, 505
testing, 458

Release metrics
code coverage, 360–364
defect metrics, 364–366
overview of, 358
passing tests, 358–360

Release notes, 474
Release planning, 329–367

overview of, 329
prioritizing and, 338–340
purpose of, 330–331
scope, 340–344
sizing and, 332–337
test plan alternatives, 350–354
test planning, 345–350
visibility and, 354–366

Reliability testing
overview of, 230–231
Remote Data Monitoring system example,

250–251
Remote Data Monitoring system example

acceptance tests, 245
application, 242–243
applying test quadrants, 252–253
automated functional test structure,

245–247
documenting test code, 251
embedded testing, 248
end-to-end tests, 249–250
exploratory testing, 248–249
overview of, 242
reliability testing, 250–251
reporting test results, 251
team and process, 243–244
testing data feeds, 249
unit tests, 244–245
user acceptance testing, 250
web services, 247–248

Remote team member. See Geographically
dispersed teams

INDEX 525

Repetitive tasks, automating, 284
Reports

documentation and, 208–210
Remote Data Monitoring system example,

251
Repository, 124
Requirements

business-facing tests addressing, 130
documentation of, 402
gathering all viewpoints regarding

requirements, 374–375
how to elicit, 135–140
nonfunctional, 218–219
quandary, 132–134
tools for eliciting examples and requirements,

155–156
Resources

completing stories and, 381
hiring agile tester, 67–69
overview of, 66
tester-developer ratio, 66–67
testing and, 434–435

Response time
API, 411
load testing and, 234–235
measurable goals and, 76
web services and, 207

Retrospectives
continuous improvement and, 28
ideas for improvement, 447–449
iteration planning and, 383
overview of, 444–445
process improvement and, 90
“start, stop, and continue” exercise,

445–447
Return on investment. See ROI (return on

investment)
Rewards, performance and, 70–71
Rich-client unit testing tools, 127
Rising, Linda, 121–122
Risk

risk analysis, 198, 286, 290, 345–346
risk assessment, 407–409
test mitigating, 147–149

Rogers, Paul, 242, 310, 388, 398
ROI (return on investment)

automation and, 264
definition, 505
lean measurement and, 75
metrics and, 78–79
speaking managerís language, 55

Role, function, business value pattern, 155
Roles

conflicting or multiple roles, 45
cultural differences among, 48–49
customer team, 7
developer team, 7–8
interaction of, 8

RPGUnit, 118
RSpec, 165, 318
Ruby Test::Unit, 170
Ruby with Watir

functional testing, 247
GUI testing, 285
identifying defects with, 212
keywords or actions words for automating

tests, 182
overview of, 172–174
test automation with, 186

RubyMock, 127
Rules, managing bugs and, 425

S
Safety tests, 232
Santos, Rafael, 448
Satisfaction conditions. See Conditions of

satisfaction
Scalability testing, 233–234
Scenario testing, 192–193

flow diagrams and, 194–195
overview of, 192–195
soap opera tests, 193

Scope, 340–344
business-facing tests defining, 134
deadlines and timelines and, 340–341
focusing on value, 341–342
overview of, 340
system-wide impact, 342

526 INDEX

Scope, continued
test plans and, 345
third-party involvement and, 342–344

Scope creep, 385, 412
Scripts

automating comparisons, 283
as automation tools, 297
conversion scripts, 461
data generation tools, 305
exploratory testing and, 211–212

Scrum
product owner role, 141, 373
Remote Data Monitoring system example,

244
sprint reviews, 444

ScrumMaster
approach to process improvement, 448–449
sizing stories and, 336–337
writing task cards and, 391

SDD (story test-driven development)
identifying variations, 410
overview of, 262–263
test-first development and, 263
testing web services and, 170

Security testing
outside-in approach of attackers, 225
overview of, 223–227
specialized knowledge required for, 220

Selenium
GUI test tools, 174–175
implementing automation, 316–318
open source tools, 163
test automation with, 186, 316

Self-organization
principles, 29–30
self-organizing teams, 69

Session-based testing, 200–201
Setup

automating, 284–285
exploratory testing, 211–212

Shared resources
access to, 43
specialists as, 301
writing tasks and, 390

Shared responsibility, 105–106
Shout-Out Shoebox, 450
“Show me,” collaboration with programmers,

413–414
Simplicity

automation and, 298–299
coding, 406
logging bugs and, 428–429
principle of “keeping it simple,” 26–27

Simulator tools
embedded testing and, 248
overview of, 213

Size, organizational, 42–43
Sizing stories, 332–337

example of, 334–337
how to, 332–333
overview of, 332
tester’s role in, 333–334

Skills
adaptability and, 39–40
vs. attitude, 20
continuous improvement principle,

27
who performs tests and, 220–221

Small chunks, incremental development,
144–146

SOAP
definition, 505
performance tests and, 223, 234

Soap opera tests, 193
soapUI

definition, 505
performance tests and, 223, 234
testing Web Services, 170–171

SOATest, 234
Software-based tools, 163
Software Configuration Management Patterns:

Effective Teamwork, Practical Integrations
(Berczuk and Appleton), 124

Software Endgames (Galen), 471
Source code control

benefits of, 255
overview of, 123–124
tools for, 124, 320

INDEX 527

SOX compliance, 469
Speak with one voice, customers, 373–374
Specialization, 220–221
Speed as a goal, 112
Spikes, development and test, 381
Spreadsheets

test spreadsheets, 353
tools for eliciting examples and requirements,

159
Sprint reviews, 444. See also Demos/

demonstrations
SQL*Loader, 460
Stability testing, 28
Staging environment, 458
Stand-up meetings, 177, 429, 462
Standards

maintainability and, 227
quality models and, 90–93

“Start, stop, continue” exercise, retrospectives,
445–447

Static analysis, security testing tools, 225
Steel thread, incremental development, 144,

338, 345
Stories. See also Business-facing tests

benefits of working on in advance of
iterations, 370–372

briefness of, 129–130
business-facing tests as, 130
determining story size, 375–376
focusing on one story when coding,

411–412
identifying variations, 410
knowing when a story is done,

104–105
logging bugs and, 420–421
mock-ups and, 380
prioritizing, 338–340
resources and, 381
scope and, 340
sizing. See Sizing stories
starting simple, 133, 406
story tests defined, 505
system-wide impact of, 342
test plans and, 345

test strategies and, 380–381
testable, 393–396
treating bugs as, 425

Story boards
burndown charts, 429
definition, 505–506
examples, 356–357
online, 357, 384
physical, 356
stickers and, 355
tasks, 222, 355, 436
virtual, 357, 384, 393
work in progress, 390

Story cards
audits and, 89
dealing with bugs and, 424–425
iteration planning and, 244
story narrative on, 409

Story test-driven development. See SDD
(story test-driven development)

Strangler application (Fowler), 116–117
Strategy

automation. See Automation strategy
test planning vs. test strategy, 86–87
test strategies, 380–381

Strategy, for writing tests
building tests incrementally, 178–179
iteration planning and, 372
keep the tests passing, 179
overview of, 177–178
test design patterns, 179–183
testability and, 183–185

Stress testing. See Load testing
Subversion (SVN), 124, 320
Success factors. See Key success factors
Successes, celebrating

change implementation and, 50–52
iteration wrap up and, 449–451

Sumrell, Megan, 365, 450
Sustainable pace, of testing, 40–41, 303
SVN (Subversion), 124, 320
SWTBot GUI test tool, 127
Synergy, between practices, 489
System, system-wide impact of story, 342

528 INDEX

T
tail-f, 212
Tartaglia, Coni, 439, 454, 470, 473
Task boards. See Story boards
Task cards

automating testing and, 394–395
iteration planning and, 389–392
product delivery and, 462–463

Tasks
completing testing tasks, 415–416
definition, 505–506

TDD (test-driven development)
automated tests driving, 262–263
defects and, 490
definition, 506
overview of, 5
Test-First Development compared with,

113–114
unit tests and, 111, 244–245

Team City, 126
Team structure, 59–65

agile project teams, 64–65
independent QA team, 60
integration of testers into agile project, 61–63
overview of, 59
traditional functional structure vs agile

structure, 64
Teams

automation as team effort, 484
building, 69–71
celebrating success, 50–52
co-located, 65–66
controlling workload and, 393
customer, 7
developer, 7–8
empowerment of, 44
facilitating communication and, 429–432
geographically dispersed, 376–378, 431–432
giving all team members equal weight, 31
giving ownership to, 50
hiring agile tester for, 67–69
interaction between customer and developer

teams, 8
iteration planning and, 384–385

logistics, 59
problem solving and, 123
Remote Data Monitoring system example,

243–244
shared responsibility and, 105–106
traditional, 9–10
using tests to support Quadrants 1 and 2,

100–101
whole team approach. See Whole team

approach
working on agile teams, 10–12

Teardown, for tests, 307–308
Technical debt

defects as, 418
definition, 506
managing, 106, 487–488

Technology-facing tests
overview of, 5
Quadrants 1 & 4, 97–98

Technology-facing tests, critiquing the product
(Quadrant 4), 217–239

baselines, 235–237
coding and testing and, 412–413
compatibility testing, 229–230
installability testing, 231–232
interoperability testing, 228–229
maintainability testing, 227–228
memory management testing, 237–238
overview of, 217–219
performance and load testing, 234
performance and load testing tools, 234–235
reliability testing, 230–231, 250–251
scalability testing, 233–234
security testing, 223–227
test environment and, 237
when to use, 222–223
who performs the test, 220–222

Technology-facing tests, supporting team
(Quadrant 1)

build tools, 126
designing with testing in mind, 115–118
ease of accomplishing tasks, 114–115
IDEs for, 124–126
infrastructure supporting, 111–112

INDEX 529

overview of, 109–110
purpose of, 110–111
source code control, 123–124
speed as benefit of, 112–114
timely feedback, 118–119
toolkit for, 123
unit test tools, 126–127
unit tests, 244–245
what to do if team doesn’t perform these

tests, 121–123
where/when to stop, 119–121

Test automation pyramid
multi-layered approach to automation and,

290–291
overview of, 276–279
three little pigs metaphor, 278

Test behind UI, 282
Test cases

adding complexity, 407
as documentation, 402
example-driven development, 379
identifying variations, 410
starting simple, 406

Test coverage (and/or code coverage),
360–364

Test design patterns, 179–183
Build/Operate/Check pattern, 180
data-driven and keyword-driven tests,

182–183
overview of, 179
test genesis patterns (Veragen), 179
time-based, activity, and event patterns, 181

Test doubles
definition, 506
layered architectures and, 116

Test-driven development. See TDD (test-driven
development)

Test environments, 237, 487
Test-First Development

definition, 506
TDD (test-driven development) compared

with, 113–114
Test management, 186
Test management toolkit (Quadrant 2), 186

Test plan alternatives, 350-354
Test planning, 345–350

automated test lists, test plan alternatives,
353–354

infrastructure and, 346–347
overview of, 86, 345
reasons for writing, 345–346
test environment and, 347–348
test plan alternatives, 350–354
test plans, lightweight 350
test plan sample, 351
test strategy vs., 86–88
traceability and, 88
types of tests and, 346
where to start, 345

Test results
communicating, 357–358
organizing, 322–324
release planning and, 349–350

Test skills. See Skills
Test spikes, 381
Test spreadsheets, 353
Test strategy

iterations, pre-iteration activities and,
380–381

test plan vs., 86–88
Test stubs

definition, 506
integration with external applications and,

459
unit tests and, 127

Test teams, 506–507. See also Teams
Test tools. See also Toolkits

API-layer functional, 168–170
exploratory testing, 210–211
generating test data with, 212
GUI tests, 170–176
home-brewed, 175
home-grown, 314
IDEs, 124–126
performance testing, 234–235
security testing, 225
unit-level tests, 126–127, 165–168
web service tests, 170

530 INDEX

Test types
alpha/beta, 466–467
exploratory. See Exploratory testing (ET)
functional. See Functional testing
GUI. See GUI testing
integration, 229, 459
load. See Load testing
performance. See Performance and load

testing
reliability, 230–231, 250–251
security, 220, 223–227
stress. See Load testing
unit. See Unit testing
usability. See Usability testing
user acceptance testing. See UAT (user

acceptance testing)
Test writing strategy. See Strategy, for writing

tests
Testability, 183–185

automated vs. manual Quadrant 2 tests, 185
automation and, 149–150
code design and test design and, 184–185
overview of, 183
of stories, 393–396

Testers
adding value, 12
agile testers, 4, 19–20
agile testing mindset, 20–21
automation allowing focus on more

important work, 260
collaboration with customers, 396–397
considering all viewpoints during iteration

planning, 386–389
controlling workload and, 393
definition, 507
facilitating communication, 429–430
feedback and, 486
hiring agile tester, 67–69
how to influence testing, 121–122
integration of testers into agile project,

61–63
iterations and, 327
making job easier, 114–115
sizing stories, 333–334

tester-developer ratio, 66–67
writing task cards and, 391

Tester's bill of rights, 49–50
Testing

coding and testing simultaneously, 409–410
completing testing tasks, 415–416
identifying variations, 410
managing, 320–322
organizing test results, 322–324
organizing tests, 319–322
planning time for, 455–456
post-development cycles, 467–468
quadrants. See Quadrants
release candidates, 458
risk assessment and, 407–409
sustainable pace of, 40–41
traditional vs. agile, 12–15
transparency of tests, 321–322

Testing in context
context-driven testing and, 106–108
definition, 502

TestNG GUI test tool, 127
Tests that never fail, 286
Text matrices, 350–353
The Grinder, 234
Themes. See also Release planning

definition, 507
prioritizing stories and, 339
writing task cards and, 392

Thin slices, incremental development and, 338
Third parties

compatibility testing and, 230
release planning and, 342–344
software, 163

Tholfsen, Mike, 203
Thomas, Mike, 116, 194
Three little pigs metaphor, 278
Timelines, scope and, 340–341
Toolkit (Quadrant 1)

build tools, 126
IDEs, 124–126
overview of, 123
source code control, 123–124
unit test tools, 126–127

INDEX 531

Toolkit (Quadrant 2)
API-layer functional test tools, 168–170
automation tools, 164–165
building tests incrementally, 178–179
checklists, 156
flow diagrams, 160–163
GUI test tools, 170–176
keep the tests passing, 179
mind maps, 156–158
mock-ups, 160
software-based tools, 163
spreadsheets, 159
strategies for writing tests, 177–178
test design patterns, 179–183
test management, 186
testability and, 183–185
tool strategy, 153–155
tools for eliciting examples and requirements,

155–156
unit-level test tools, 165–168
Web service test tool, 170

Toolkit (Quadrant 3)
emulator tools, 213–214
monitoring tools, 212–213
simulator tools, 213
user acceptance testing, 250

Toolkit (Quadrant 4)
baselines, 235–237
performance and load testing tools, 234–235

Tools
API-layer functional test tools, 168–170
automation, 164–165
data generation, 304–305
defect tracking, 83–85
eliciting examples and requirements,

155–156, 159–163
emulator tools, 213–214
exploratory testing, 210–211
generating test data, 212
GUI test tools, 170–176
home-brewed, 175
home-grown, 314
IDEs, 124–126
load testing, 234–235

monitoring, 212–213
open source, 172, 314–315
performance testing, 234–235
for product owners and business experts, 134
security testing, 225
simulators, 213
software-based, 163
unit-level tests, 126–127, 165–168
vendor/commercial, 315–316
web service test tool, 170

Tools, automation
agile-friendly, 316
applying one tool at a time, 312–313
home-brewed, 175
home-grown, 314
identifying tool requirements, 311–312
open source, 314–315
selecting, 294–298
vendors, 315–316

Traceability
DTS and, 82
matrices, 86
test planning and, 88

Tracking, test tasks and status, 354–357
Traditional processes, transitioning. See

Transitioning traditional processes to agile
Traditional teams, 9–10
Traditional vs. agile testing, 12–15
Training

as deliverable, 469
lack of, 45

Transitioning traditional processes to agile, 73–93
defect tracking. See Defect tracking
existing process and, 88–92
lean measurements, 74–75
lightweight processes and, 73–74
metrics and, 74–79
overview of, 73
test planning. See Test planning

U
UAT (user acceptance testing)

post-development testing cycles, 467–468
product delivery and, 464–466

532 INDEX

UAT (user acceptance testing), continued
in Quadrant 3, 102
release planning for, 331, 346
Remote Data Monitoring system example,

250
in test plan, 351
tryng out new features and, 102
writing at iteration kickoff meeting, 372

UI (user interface). See also GUI (graphical user
interface)

automation strategy and, 293
modeling and, 399

Unit test tools, 165–168. See also by individual
unit tools

behavior-driven development tools, 166–168
list of, 126–127
overview of, 165

Unit testing
automating, 282
BDD (Behavior-driven development), 165–168
definition, 507
metrics and, 76
supporting function of, 5
TDD (test-driven development) and, 111
technology-facing tests, 120
tools for Quadrant 1 tests, 126–127

Usability testing, 202–204
checking out applications of competitors, 204
navigation and, 204
overview of, 202
users needs and persona testing, 202–204
what should not be automated, 285–286

Use cases, 398
User acceptance testing. See UAT (user

acceptance testing)
User documentation, 207–208
User interface (UI). See also GUI (graphical user

interface)
automation strategy and, 293
modeling and, 399
User story. See Story
User story card. See Story card

User Stories Applied for Agile Software
Development (Cohn), 155

V
Vaage, Carol, 330
Value

adding, 31–33
delivering to customer, 22–23
focusing on, 341–342
testers adding, 12

Values, agile, 3–4. See also Principles, for agile
testers

Variations, coding and testing and, 410
Velocity

automation and, 255, 484
burnout rate and, 79
database impact on, 228
defects and, 487
definition, 507
maximizing, 370
sustainable pace of testing and, 41
taking time to do it right, 301
technical debt and, 106, 313, 418, 506

Vendors
automation tools, 315–316
capture-playback tool, 267
IDEs, 125
planning and, 342–344
source code control tools, 124
working with, 142, 349

Veragen, Pierre, 76, 163, 179, 295, 363, 372,
444

Version control, 123–124, 186. See also
Source Code Control

Viewpoints. See also Big picture
considering all viewpoints during iteration

planning, 385–389
gathering all viewpoints regarding

requirements, 374–375
Power of Three and, 411
using multiple viewpoints in eliciting

requirement, 137–138
Visibility, 354–366

code coverage, 360–364
communicating test results, 357–358
defect metrics, 364–366
number of passing tests, 358–360

INDEX 533

overview of, 354
release metrics, 358
tracking test tasks and status, 354–357

Visual Studio, 125
Voris, John, 117

W
Waterfall approach, to development

agile development compared with, 12–13
ìmini-waterfallî phenomenon, 46–47
successes of, 112
test plans and, 346

Watir (Web Application Testing in Ruby), 163,
172–174, 320. See also Ruby with Watir

Web Services Description Language (WSDL),
507

Web service testing
automating, 282
overview of, 207
Remote Data Monitoring system example,

247–248
tools for, 170–171

WebLoad, 234
Whelan, Declan, 321
Whiteboards

example-driven development, 379
facilitating communication, 430
modeling, 399
planning diagram, 371
reviewing high-level tests with programmers,

400–401
test plan alternatives, 353–354

Whole team approach, 325
advantages of, 26
agile vs. traditional development, 15–16
automation strategy and, 300–301
budget limits and, 55
finding enjoyment in work and, 31
key success factors, 482, 491
pairing testers with programmers, 279

shared responsibility and, 105–106
team building and, 69
team structure and, 59–62
to test automation, 270
test management and, 322
traditional cross-functional team compared

with, 64
value of team members and, 70

Wiki
as communication tool, 164
graphical documentation of examples,

398–399
mockups, 160, 380
requirements, 402
story checklists and, 156
test cases, 372
traceability and, 88

Wilson-Welsh, Patrick, 278
Wizard of Oz Testing, 138–139
Workflow diagrams, 398
Working Effectively With Legacy Code (Feathers),

117, 288
Workload, 393
Worst-case scenarios, 136, 334
Writing tests, strategy for. See Strategy, for

writing tests
WSDL (Web Services Description Language),

507

X
XP (Extreme Programming)

agile team embracing, 10–11
courage as core value in, 25

xUnit, 126–127

Y
Yakich, Joe, 316

Z
Zero bug tolerance, 79, 418–419

	Cover�������������������������������
	Reviews�������������������������������������
	Agile Testing: A Practical Guide For Testers And Agile Teams��
	Copyright���
	Contents��
	Foreword By Mike Cohn���
	Foreword by Brian Marick
	Preface�������������������������������������
	Acknowledgments���
	Part I - Introduction
	1. What Is Agile Testing, Anyway?
	Agile Values�������������������
	What Do We Mean by “Agile Testing”?��
	A Little Context for Roles and Activities on an Agile Team���
	Customer Team��������������������
	Developer Team���������������������
	Interaction between Customer and Developer Teams���

	How Is Agile Testing Different?��������������������������������������
	Working on Traditional Teams�����������������������������������
	Working on Agile Teams�����������������������������
	Traditional vs. Agile Testing������������������������������������

	Whole-Team Approach��������������������������
	Summary��������������

	2. Ten Principles for Agile Testers
	What’s an Agile Tester?������������������������������
	The Agile Testing Mind-Set���������������������������������
	Applying Agile Principles and Values���
	Provide Continuous Feedback����������������������������������
	Deliver Value to the Customer������������������������������������
	Enable Face-to-Face Communication��
	Have Courage�������������������
	Keep It Simple���������������������
	Practice Continuous Improvement��������������������������������������
	Respond to Change������������������������
	Self-Organize��������������������
	Focus on People����������������������
	Enjoy������������

	Adding Value�������������������
	Summary��������������

	Part II - Organizational Challenges
	3. Cultural Challenges
	Organizational Culture�����������������������������
	Quality Philosophy�������������������������
	Sustainable Pace�����������������������
	Customer Relationships�����������������������������
	Organization Size������������������������
	Empower Your Team������������������������

	Barriers to Successful Agile Adoption by Test/QA Teams���
	Loss of Identity�����������������������
	Additional Roles�����������������������
	Lack of Training�����������������������
	Not Understanding Agile Concepts���������������������������������������
	Past Experience/Attitude�������������������������������
	Cultural Differences among Roles���������������������������������������

	Introducing Change�������������������������
	Talk about Fears�����������������������
	Give Team Ownership��������������������������
	Celebrate Success������������������������

	Management Expectations������������������������������
	Cultural Changes for Managers������������������������������������
	Speaking the Manager’s Language��������������������������������������

	Change Doesn’t Come Easy�������������������������������
	Be Patient�����������������
	Let Them Feel Pain�������������������������
	Build Your Credibility�����������������������������
	Work On Your Own Professional Development��
	Beware the Quality Police Mentality��
	Vote with Your Feet��������������������������

	Summary��������������

	4. Team Logistics
	Team Structure���������������������
	Independent QA Teams���������������������������
	Integration of Testers into an Agile Project���
	Agile Project Teams��������������������������

	Physical Logistics�������������������������
	Resources����������������
	Tester-Developer Ratio�����������������������������
	Hiring an Agile Tester�����������������������������

	Building a Team����������������������
	Self-Organizing Team���������������������������
	Involving Other Teams����������������������������
	Every Team Member Has Equal Value��
	Performance and Rewards������������������������������
	What Can You Do?�����������������������

	Summary��������������

	5. Transitioning Typical Processes
	Seeking Lightweight Processes������������������������������������
	Metrics��������������
	Lean Measurements������������������������
	Why We Need Metrics��������������������������
	What Not to Do with Metrics����������������������������������
	Communicating Metrics����������������������������
	Metrics ROI������������������

	Defect Tracking����������������������
	Why Should We Use a Defect Tracking System (DTS)?��
	Why Shouldn’t We Use a DTS?����������������������������������
	Defect Tracking Tools����������������������������
	Keep Your Focus����������������������

	Test Planning��������������������
	Test Strategy vs. Test Planning��������������������������������������
	Traceability�������������������

	Existing Processes and Models������������������������������������
	Audits�������������
	Frameworks, Models, and Standards��

	Summary��������������

	Part III - The Agile Testing Quadrants
	6. The Purpose of Testing
	The Agile Testing Quadrants����������������������������������
	Tests that Support the Team����������������������������������
	Tests that Critique the Product��������������������������������������

	Knowing When a Story Is Done�����������������������������������
	Shared Responsibility����������������������������

	Managing Technical Debt������������������������������
	Testing in Context�������������������������
	Summary��������������

	7. Technology-Facing Tests that Support the Team
	An Agile Testing Foundation����������������������������������
	The Purpose of Quadrant 1 Tests��������������������������������������
	Supporting Infrastructure��������������������������������

	Why Write and Execute These Tests?���
	Lets Us Go Faster and Do More������������������������������������
	Making Testers’ Jobs Easier����������������������������������
	Designing with Testing in Mind�������������������������������������
	Timely Feedback����������������������

	Where Do Technology-Facing Tests Stop?���
	What If the Team Doesn’t Do These Tests?���
	What Can Testers Do?���������������������������
	What Can Managers Do?����������������������������
	It’s a Team Problem��������������������������

	Toolkit��������������
	Source Code Control��������������������������
	IDEs�����������
	Build Tools������������������
	Build Automation Tools�����������������������������
	Unit Test Tools����������������������

	Summary��������������

	8. Business-Facing Tests that Support the Team
	Driving Development with Business-Facing Tests���
	The Requirements Quandary��������������������������������
	Common Language����������������������
	Eliciting Requirements�����������������������������
	Advance Clarity����������������������
	Conditions of Satisfaction���������������������������������
	Ripple Effects���������������������

	Thin Slices, Small Chunks��������������������������������
	How Do We Know We’re Done?���������������������������������
	Tests Mitigate Risk��������������������������
	Testability and Automation���������������������������������
	Summary��������������

	9. Toolkit for Business-Facing Tests that Support the Team
	Business-Facing Test Tool Strategy���
	Tools to Elicit Examples and Requirements��
	Checklists�����������������
	Mind Maps����������������
	Spreadsheets�������������������
	Mock-Ups���������������
	Flow Diagrams��������������������
	Software-Based Tools���������������������������

	Tools for Automating Tests Based on Examples���
	Tools to Test below the GUI and API Level��
	Tools for Testing through the GUI��

	Strategies for Writing Tests�����������������������������������
	Build Tests Incrementally��������������������������������
	Keep the Tests Passing�����������������������������
	Use Appropriate Test Design Patterns���
	Keyword and Data-Driven Tests������������������������������������

	Testability������������������
	Code Design and Test Design����������������������������������
	Automated vs. Manual Quadrant 2 Tests��

	Test Management����������������������
	Summary��������������

	10. Business-Facing Tests that Critique the Product
	Introduction to Quadrant 3���������������������������������
	Demonstrations���������������������
	Scenario Testing�����������������������
	Exploratory Testing��������������������������
	Session-Based Testing����������������������������
	Automation and Exploratory Testing���
	An Exploratory Tester����������������������������

	Usability Testing������������������������
	User Needs and Persona Testing�������������������������������������
	Navigation�����������������
	Check Out the Competition��������������������������������

	Behind the GUI���������������������
	API Testing������������������
	Web Services�������������������

	Testing Documents and Documentation��
	User Documentation�������������������������
	Reports��������������

	Tools to Assist with Exploratory Testing���
	Test Setup�����������������
	Test Data Generation���������������������������
	Monitoring Tools�����������������������
	Simulators�����������������
	Emulators����������������

	Summary��������������

	11. Critiquing the Product Using Technology-Facing Tests
	Introduction to Quadrant 4���������������������������������
	Who Does It?�������������������
	When Do You Do It?�������������������������
	“ility” Testing����������������������
	Security���������������
	Maintainability����������������������
	Interoperability�����������������������
	Compatibility��������������������
	Reliability������������������
	Installability���������������������
	“ility” Summary����������������������

	Performance, Load, Stress, and Scalability Testing���
	Scalability������������������
	Performance and Load Testing�����������������������������������
	Performance and Load-Testing Tools���
	Baseline���������������
	Test Environments������������������������
	Memory Management������������������������

	Summary��������������

	12. Summary of Testing Quadrants
	Review of the Testing Quadrants��������������������������������������
	A System Test Example����������������������������
	The Application����������������������
	The Team and the Process�������������������������������

	Tests Driving Development��������������������������������
	Unit Tests�����������������
	Acceptance Tests�����������������������

	Automation�����������������
	The Automated Functional Test Structure��
	Web Services�������������������
	Embedded Testing�����������������������

	Critiquing the Product with Business-Facing Tests��
	Exploratory Testing��������������������������
	Testing Data Feeds�������������������������
	The End-to-End Tests���������������������������
	User Acceptance Testing������������������������������
	Reliability������������������

	Documentation��������������������
	Documenting the Test Code��������������������������������
	Reporting the Test Results���������������������������������

	Using the Agile Testing Quadrants��
	Summary��������������

	Part IV - Automation
	13. Why We Want to Automate Tests and What Holds Us Back
	Why Automate?��������������������
	Manual Testing Takes Too Long������������������������������������
	Manual Processes Are Error Prone���������������������������������������
	Automation Frees People to Do Their Best Work��
	Automated Regression Tests Provide a Safety Net��
	Automated Tests Give Feedback, Early and Often���
	Tests and Examples that Drive Coding Can Do More���
	Tests Are Great Documentation������������������������������������
	ROI and Payback����������������������

	Barriers to Automation—Things that Get in the Way��
	Bret’s List������������������
	Our List���������������
	Programmers’ Attitude—“Why Automate?”��
	The “Hump of Pain” (The Learning Curve)��
	Initial Investment�������������������������
	Code that’s Always in Flux���������������������������������
	Legacy Code������������������
	Fear�����������
	Old Habits�����������������

	Can We Overcome These Barriers?��������������������������������������
	Summary��������������

	14. An Agile Test Automation Strategy
	An Agile Approach to Test Automation���
	Automation Test Categories���������������������������������
	Test Automation Pyramid������������������������������

	What Can We Automate?����������������������������
	Continuous Integration, Builds, and Deploys��
	Unit and Component Tests�������������������������������
	API or Web Services Testing����������������������������������
	Testing behind the GUI�����������������������������
	Testing the GUI����������������������
	Load Tests�����������������
	Comparisons������������������
	Repetitive Tasks�����������������������
	Data Creation or Setup�����������������������������

	What Shouldn’t We Automate?����������������������������������
	Usability Testing������������������������
	Exploratory Testing��������������������������
	Tests that Will Never Fail���������������������������������
	One-Off Tests��������������������

	What Might Be Hard to Automate?��������������������������������������
	Developing an Automation Strategy—Where Do We Start?���
	Where Does It Hurt the Most?�����������������������������������
	Multi-Layered Approach�����������������������������
	Think about Test Design and Maintenance��
	Choosing the Right Tools�������������������������������

	Applying Agile Principles to Test Automation���
	Keep It Simple���������������������
	Iterative Feedback�������������������������
	Whole-Team Approach��������������������������
	Taking the Time to Do It Right�������������������������������������
	Learn by Doing���������������������
	Apply Agile Coding Practices to Tests��

	Supplying Data for Tests�������������������������������
	Data Generation Tools����������������������������
	Avoid Database Access����������������������������
	When Database Access Is Unavoidable or Even Desirable��
	Understand Your Needs����������������������������

	Evaluating Automation Tools����������������������������������
	Identifying Requirements for Your Automation Tool��
	One Tool at a Time�������������������������
	Choosing Tools���������������������
	Agile-Friendly Tools���������������������������

	Implementing Automation������������������������������
	Managing Automated Tests�������������������������������
	Organizing Tests�����������������������
	Organizing Test Results������������������������������

	Go Get Started���������������������
	Summary��������������

	Part V - An Iteration in the Life of a Tester
	15. Tester Activities in Release or Theme Planning
	The Purpose of Release Planning��������������������������������������
	Sizing�������������
	How to Size Stories��������������������������
	The Tester’s Role in Sizing Stories��
	An Example of Sizing Stories�����������������������������������

	Prioritizing�������������������
	Why We Prioritize Stories��������������������������������
	Testing Considerations While Prioritizing��

	What’s in Scope?�����������������������
	Deadlines and Timelines������������������������������
	Focus on Value���������������������
	System-Wide Impact�������������������������
	Third-Party Involvement������������������������������

	Test Planning��������������������
	Where to Start���������������������
	Why Write a Test Plan?�����������������������������
	Types of Testing�����������������������
	Infrastructure���������������������
	Test Environments������������������������
	Test Data����������������
	Test Results�������������������

	Test Plan Alternatives�����������������������������
	Lightweight Test Plans�����������������������������
	Using a Test Matrix��������������������������
	Test Spreadsheet�����������������������
	A Whiteboard�������������������
	Automated Test List��������������������������

	Preparing for Visibility�������������������������������
	Tracking Test Tasks and Status�������������������������������������
	Communicating Test Results���������������������������������
	Release Metrics����������������������

	Summary��������������

	16. Hit the Ground Running
	Be Proactive�������������������
	Benefits���������������
	Do You Really Need This?�������������������������������
	Potential Downsides to Advance Preparation���

	Advance Clarity����������������������
	Customers Speak with One Voice�������������������������������������
	Story Size�����������������
	Geographically Dispersed Teams�������������������������������������

	Examples���������������
	Test Strategies����������������������
	Prioritize Defects�������������������������
	Resources����������������
	Summary��������������

	17. Iteration Kickoff
	Iteration Planning�������������������������
	Learning the Details���������������������������
	Considering All Viewpoints���������������������������������
	Writing Task Cards�������������������������
	Deciding on Workload���������������������������

	Testable Stories�����������������������
	Collaborate with Customers���������������������������������
	High-Level Tests and Examples������������������������������������
	Reviewing with Customers�������������������������������
	Reviewing with Programmers���������������������������������
	Test Cases as Documentation����������������������������������

	Summary��������������

	18. Coding and Testing
	Driving Development��������������������������
	Start Simple�������������������
	Add Complexity���������������������
	Assess Risk������������������
	Coding and Testing Progress Together���
	Identify Variations��������������������������
	Power of Three���������������������
	Focus on One Story�������������������������

	Tests that Critique the Product��������������������������������������
	Collaborate with Programmers�����������������������������������
	Pair Testing�������������������
	“Show Me”����������������

	Talk to Customers������������������������
	Show Customers���������������������
	Understand the Business������������������������������

	Completing Testing Tasks�������������������������������
	Dealing with Bugs������������������������
	Is It a Defect or Is It a Feature?���
	Technical Debt���������������������
	Zero Bug Tolerance�������������������������

	It’s All about Choices�����������������������������
	Decide Which Bugs to Log�������������������������������
	Choose When to Fix Your Bugs�����������������������������������
	Choose the Media You Should Use to Log a Bug���
	Alternatives and Suggestions for Dealing with Bugs���
	Start Simple�������������������

	Facilitate Communication�������������������������������
	Testers Facilitate Communication���������������������������������������
	Distributed Teams������������������������

	Regression Tests�����������������������
	Keep the Build “Green”�����������������������������
	Keep the Build Quick���������������������������
	Building a Regression Suite����������������������������������
	Checking the “Big Picture”���������������������������������

	Resources����������������
	Iteration Metrics������������������������
	Measuring Progress�������������������������
	Defect Metrics���������������������

	Summary��������������

	19. Wrap Up the Iteration
	Iteration Demo���������������������
	Retrospectives���������������������
	Start, Stop, and Continue��������������������������������
	Ideas for Improvements�����������������������������

	Celebrate Successes��������������������������
	Summary��������������

	20. Successful Delivery
	What Makes a Product?����������������������������
	Planning Enough Time for Testing���������������������������������������
	The End Game�������������������
	Testing the Release Candidate������������������������������������
	Test on a Staging Environment������������������������������������
	Final Nonfunctional Testing����������������������������������
	Integration with External Applications���
	Data Conversion and Database Updates���
	Installation Testing���������������������������
	Communication��������������������
	What If It’s Not Ready?������������������������������

	Customer Testing�����������������������
	UAT����������
	Alpha/Beta Testing�������������������������

	Post-Development Testing Cycles��������������������������������������
	Deliverables�������������������
	Releasing the Product����������������������������
	Release Acceptance Criteria����������������������������������
	Release Management�������������������������
	Packaging����������������

	Customer Expectations����������������������������
	Production Support�������������������������
	Understand Impact to Business������������������������������������

	Summary��������������

	Part VI - Summary
	21. Key Success Factors
	Success Factor 1: Use the Whole-Team Approach��
	Success Factor 2: Adopt an Agile Testing Mind-Set��
	Success Factor 3: Automate Regression Testing��
	Success Factor 4: Provide and Obtain Feedback��
	Success Factor 5: Build a Foundation of Core Practices���
	Continuous Integration�����������������������������
	Test Environments������������������������
	Manage Technical Debt����������������������������
	Working Incrementally����������������������������
	Coding and Testing Are Part of One Process���
	Synergy between Practices��������������������������������

	Success Factor 6: Collaborate with Customers���
	Success Factor 7: Look at the Big Picture��
	Summary��������������

	Glossary���������������
	Bibliography�������������������
	Index������������
	A
	B
	C
	D
	E, F
	G
	H, I
	J, K
	L, M
	N, O, P
	Q
	R
	S
	T
	U
	V
	W, X, Y, Z

