Calculation task № 2.

Determine the mass and volume of bentonitic clay and the volume of waste water which are needed for preparing 1 m^3 of drilling mud. Moisture content of bentonitic clay is 7.5 %, the density of waste water is 1060 kg/m³, the density of drilling mud is 1250 kg/m³. Instruction: the magnitude of the density of bentonitic clay should be taken within the range 2200 – 2700 kg/m³.

Data:

$$n_{b.c.} = 0.075$$

$$\rho_{\rm h.c} = 2450 \text{ kg/m}^3$$

$$\rho_{\text{W.W.}} = 1060 \text{ kg/m}^3$$

$$\rho_{\rm d.m.} = 1250 \text{ kg/m}^3$$

Solution

The mass of bentonitic clay which is needed for preparing 1 m³ of drilling mud is determined by formula:

$$G_{b.c.} = \frac{\rho_{b.c.} \cdot (\rho_{d.m.} - \rho_{w.w.})}{\rho_{b.c.} - \rho_{w.w.} \cdot (1 - n_{b.c.} + 10^{-3} \cdot n_{b.c.} \cdot \rho_{b.c.})}$$
(1)

where $G_{b.c.}$ is the mass of bentonitic clay which is needed for preparing 1 m³ of drilling mud, kg/m³; $\rho_{b.c.}$ is the density of bentonitic clay, kg/m³; $n_{b.c.}$ is moisture content of bentonitic clay, fractions; $\rho_{d.m.}$ is the density of drilling mud, kg/m³; $\rho_{w.w.}$ is the density of waste water, kg/m³.

According to the instruction for the solution of problem take the magnitude of the density of bentonitic clay: $\rho_{\rm b.c.} = 2450 \ {\rm kg/m^3}$.

So
$$G_{b.c.} = \frac{2450 \cdot (1250 - 1060)}{2450 - 1060 \cdot (1 - 0.075 + 10^{-3} \cdot 0.075 \cdot 2450)} = 365.2 \text{ kg/m}^3.$$

2. The volume of bentonitic clay which is needed for preparing 1 m^3 of drilling mud (m^3/m^3):

$$V_{b.c.} = \frac{G_{b.c.}}{\rho_{b.c.}}$$
 (2)

$$V_{b.c.} = \frac{365.2}{2450} = 0.149 \text{ m}^3/\text{m}^3.$$

3. The volume of waste water which is needed for preparing 1 m³ of drilling mud:

$$V_{w.w} = 1 - V_{b.c.}$$
 (3)
 $V_{w.w} = 1 - V_{b.c.} = 1 - 0.149 = 0.851 \text{ m}^3/\text{m}^3$.

Answer:
$$G_{b.c.} = 365.2 \text{ kg/m}^3$$
; $V_{b.c.} = 0.149 \text{ m}^3/\text{m}^3$; $V_{w.w.} = 0.851 \text{ m}^3/\text{m}^3$.