2021

HI - 17 - 4i, HI - 17 - 5i.

## Calculation task № 17

Homogeneous liquid moves in a complex oil flow line. Determine the pressure at points  $\bf C$  and  $\bf B$ , if the flow line inner diameter is equal to 0.1 m (where  $d_1 = d_2 = d_3$ ), the coefficient of dynamic viscosity of oil is 8.5 mPa·s, oil density is 865 kg/m³, the pressure at point  $\bf A$  is 4.6 MPa, flow rate of the fluid in the first section is 750 m³/d, flow rate of the fluid in the second section is 345 m³/d, lengths of sections are 1950, 2760 and 4230 m.

$$d_1 = 0.1$$
 m

$$d_2 = 0.1$$
 m

$$d_3 = 0.1$$
 m

$$d = 0.1$$
 m

$$P_A = 4.6 \times 10^6$$
 MPa

$$L_1 = 1950$$
 m

$$L_2 = 2760$$
 m

$$L_3 = 4230$$
 m

$$\rho_0 := 865 \, \text{kg/m}^3$$

$$\mu_0 := 8.5 \cdot 10^{-3}$$
 Pa·s

$$Q_1 = 750$$
 m<sup>3</sup>/day

$$Q_2 = 345$$
 m<sup>3</sup>/day

Determine: 
$$P_B - ? P_C - ?$$

## **Solution**

Figure



Pressure at the point B:

$$P_{B} = P_{A} - \Delta P_{fr1} - \Delta P_{fr2}$$

Pressure at the point C:

$$P_{C} = P_{A} - \Delta P_{fr1} - \Delta P_{fr3}$$

Flow rate of the fluid in the third section:

$$Q_1 = Q_2 + Q_3$$

$$Q_3 := Q_1 - Q_2$$
  $Q_3 := 750 - 345$  =  $405 \text{ m}^3/\text{day}$ 

1. Velocity of oil in the sections of complex oil flow line:

$$V_{1} := \frac{4 \cdot Q_{1}}{\pi \cdot d^{2} \cdot 86400} \qquad V_{1} := \frac{4 \cdot 750}{\pi \cdot 0.1^{2} \cdot 86400} \qquad V_{1} = 1.105 \qquad \frac{m}{s}$$

$$V_{2} := \frac{4 \cdot Q_{2}}{\pi \cdot d^{2} \cdot 86400} \qquad V_{2} := \frac{4 \cdot 345}{\pi \cdot 0.1^{2} \cdot 86400} \qquad V_{2} = 0.508 \qquad \frac{m}{s}$$

$$V_{3} := \frac{4 \cdot Q_{3}}{\pi \cdot d^{2} \cdot 86400} \qquad V_{3} := \frac{4 \cdot 405}{\pi \cdot 0.1^{2} \cdot 86400} \qquad V_{3} = 0.597 \qquad \frac{m}{s}$$

2. Reynolds number for sections of complex oil flow line:

$$Re_{1} := \frac{V_{1} \cdot d \cdot \rho_{o}}{\mu_{o}} \qquad Re_{1} := \frac{1.105 \cdot 0.1 \cdot 865}{8.5 \times 10^{-3}} \qquad Re_{1} = 11245$$

$$Re_{2} := \frac{V_{2} \cdot d \cdot \rho_{o}}{\mu_{o}} \qquad Re_{2} := \frac{0.508 \cdot 0.1 \cdot 865}{8.5 \times 10^{-3}} \qquad Re_{2} = 5169.6$$

$$Re_{3} := \frac{V_{3} \cdot d \cdot \rho_{o}}{\mu_{o}} \qquad Re_{3} := \frac{0.597 \cdot 0.1 \cdot 865}{8.5 \times 10^{-3}} \qquad Re_{3} = 6075.4$$

$$Re_{cr} = 2320$$

 $Re_1 > Re_{cr}$   $Re_2 > Re_{cr}$   $Re_3 > Re_{cr}$ 

3. Coefficients of hydraulic resistance for sections of complex oil flow line:

$$\lambda_1 := \frac{0.3164}{\text{Re}_1^{0.25}} \qquad \lambda_1 := \frac{0.3164}{11245^{0.25}} \qquad \lambda_1 = 0.031$$

$$\lambda_2 := \frac{0.3164}{\text{Re}_2^{0.25}} \qquad \lambda_2 := \frac{0.3164}{5169.6^{0.25}} \qquad \lambda_2 = 0.0373$$

$$\lambda_3 := \frac{0.3164}{\text{Re}_3^{0.25}} \qquad \lambda_3 := \frac{0.3164}{6075.4^{0.25}} \qquad \lambda_3 = 0.036$$

4. Determine pressure losses in sections of complex oil flow line:

$$\Delta P_{fr1} := \lambda_1 \cdot \frac{L_1}{d} \cdot \frac{{V_1}^2}{2} \cdot \rho_0 \quad = \quad 0.031 \cdot \frac{1950}{0.1} \cdot \frac{1.105^2}{2} \cdot 865 = 3.19 \times 10^5 \quad Pa$$

$$\Delta P_{ff2} := \lambda_2 \cdot \frac{L_2}{d} \cdot \frac{{V_2}^2}{2} \cdot \rho_0 = 0.0373 \cdot \frac{2760}{0.1} \cdot \frac{0.508^2}{2} \cdot 865 = 1.149 \times 10^5 \quad Parameter = 0.0373 \cdot \frac{2760}{0.1} \cdot \frac{0.508^2}{2} \cdot 865 = 1.149 \times 10^5$$

$$\Delta P_{fi3} := \lambda_3 \cdot \frac{L_3}{d} \cdot \frac{{V_3}^2}{2} \cdot \rho_0 \qquad = \qquad 0.036 \cdot \frac{4230}{0.1} \cdot \frac{0.597^2}{2} \cdot 865 = 2.3 \times 10^5 \qquad \text{Pa}$$

5. Determine the pressure at the point B:

$$P_B := P_A - \Delta P_{fr1} - \Delta P_{fr2} = 4.6 \times 10^6 - 3.19 \times 10^5 - 1.149 \times 10^5 = 4.17 \times 10^6$$
 Pa

6. Determine the pressure at the point C:

$$P_C := P_A - \Delta P_{fr1} - \Delta P_{fr3} = 4.6 \times 10^6 - 3.19 \times 10^5 - 2.3 \times 10^5 = 4.05 \times 10^6$$
 Pa

Answer: 
$$P_B = 4.17 \times 10^6$$
 Pa ;  $P_C = 4.05 \times 10^6$  Pa