
Design Calculation of Lines when Transporting Homogeneous Liquid

In general, pressure differential between the beginning and end line points is equal to:

$$P_1 - P_2 = \Delta P_f \pm \Delta Z \rho g + P_{l.s}$$

THE PRESSURE LOSS TO OVERCOME THE FRICTION FORCES ALONG THE LENGTH OF THE PIPELINE IS CALCULATED BY THE DARCY-WEISBACH EQUATION

$$\mathbf{P_f} = \lambda \frac{\mathbf{L}}{\mathbf{D}} \frac{\mathbf{v}^2}{2} \boldsymbol{\rho}$$

$$\lambda = f(Re)$$

$$\operatorname{Re} = \frac{\upsilon \cdot D}{\nu}$$

At laminar flow (Re<2320), the hydraulic resistance coefficient is equal to:

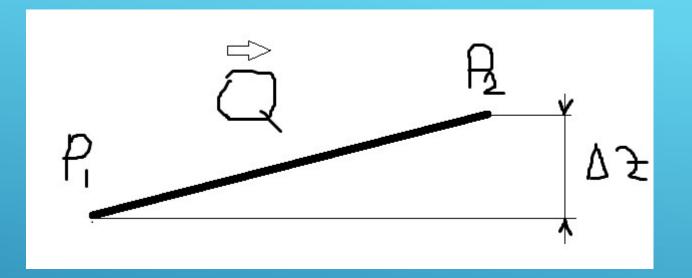
 $\lambda = \frac{64}{\text{Re}}$

At turbulent flow, three zones are distinguished:

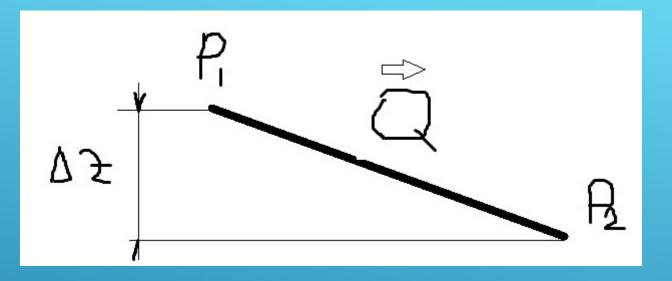
Zone of hydraulically smooth pipes.
This zone occurs at 2320<Re<10⁵

$$\lambda = \frac{0,3164}{\text{Re}^{0,25}}$$

2) Zone of combined friction law

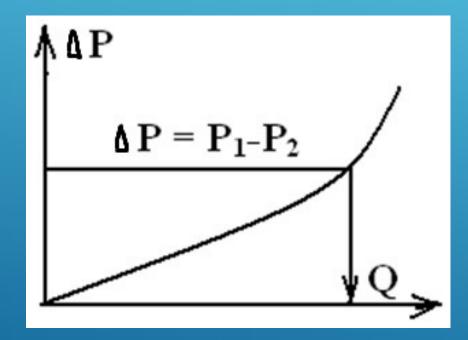

$$10^5 < \text{Re} < \frac{2\Delta}{D}$$

$$\lambda = 0,11 \left(\frac{68}{\text{Re}} + \frac{\Delta}{\text{D}}\right)^{0,25}$$

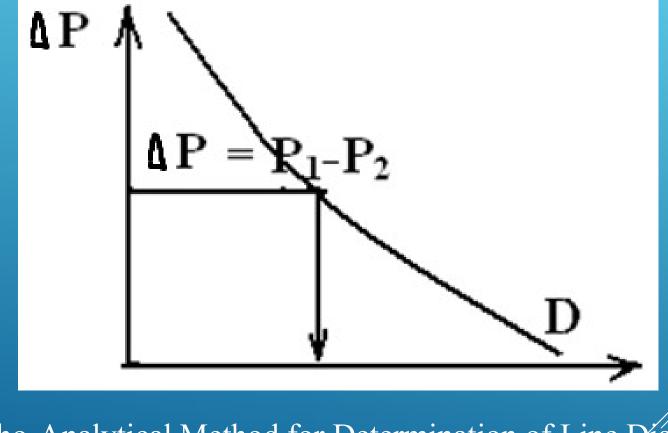

3) Zone of hydraulically rigid pipes or quadratic zone

$$\frac{2\Delta}{D} \ll \text{Re}$$

$$\lambda = 0,11 \left[\frac{\Delta}{D}\right]^{0,25}$$



$$P_1 - P_2 = \Delta P_f \pm \Delta Z \rho g + P_{l.s}$$


$$P_1 - P_2 = \Delta P_f \pm \Delta Z \rho g + P_{l.s}$$

If we have a problem to determine the capacity of the pipeline Q, then this problem can be solved by graphoanalytical method. Here it is necessary to take several arbitrary values of fluid flow Q and determine the pressure loss.

Grapho-Analytical Method for Determination of Line Flow Capacity

Similarly, the problem of determining the required diameter of the pipeline is solved

Grapho-Analytical Method for Determination of Line Diameter

Required oil pipeline diameter for degassed oil supply from the separation unit to the oil treatment unit (OTU). $P_1=2,1$ MPa $P_2=0,8$ MPa L=5000 m $\rho=820$ kg|m³ $\mu=3$ mPa·s Q=750 m³|d

	1	2	3	4	5
1	d, m	v, m/s	Re	Л	dP, Pa
2	0,05	4,42	60406,6	0,026	20825802
3	0,1	1,12	30613,3	0,026	668595,2
4	0,15	0,49	20090	0,0277	90893,85
5	0,2	0,28	15306,6	0,0327	26277,72
6	0,25	0,176	12026,6	0,0302	250000